
CZECH TECHNICAL UNIVERSITY
Faculty of Electrical Engineering
Department of Electromagnetic Field

Evolutionary Design of Microwave Circuits
Diploma Thesis

Tomáš Müller

Supervisor: Prof. Ing. Zbyněk Škvor, CSc.

May 2003

ii

Acknowledgements
Many thanks to Prof. Ing. Zbyněk Škvor, CSc. for patient and systematic

guidance in creation of this diploma thesis.

Prohlašuji, že jsem svou diplomovou práci napsal samostatně a výhradně
s použitím citovaných pramenů. Souhlasím se zapůjčováním práce.

I claim that I have developed this diploma thesis individually and
exclusively with the use of the cited sources. I agree with lending of this work.

Prague, 23rd May, 2003 Tomáš Müller

iii

Table of Contents

0. INTRODUCTION ..1
1. EVOLUTION ...2

1.1. Genetic Algorithms ..2
1.2. Evolutionary (single individual population, local search) algorithms .4
1.2.1. Hill-Climbing ...5
1.2.2. Hill-Climbing-Random-Walk ..6
1.2.3. Tabu-Search ...6
1.2.4. Simulated-Anealing ...7
1.2.5. Stochastic Hill-Climbing..8
1.2.6. Local Search...9
1.3. Conclusion ...9

2. THE ALGORITHM PROPOSAL ..10
2.1. Algorithm Requirements..10
2.2. Circuit Representation..10
2.3. Evaluation of Circuits ..12
2.4. Circuit’s Neighbourhood..14
2.5. Initial Configuration...17
2.6. Algorithm ...17
2.6.1. Operation Selection..18
2.6.2. Acceptance Criterion..19
2.7. Algorithm Improvements ...19
2.7.1. Local (Parameter) Optimization...19
2.7.2. Backtracking ..20
2.7.3. RMS Error Estimation ...22
2.8. Conclusion ...25

3. IMPLEMENTATION ISSUES ..26
3.1. Circuit Elements...26
3.2. Circuit Representation..27
3.3. Operations ..28
3.4. Frequency Requirements..29
3.5. Analysis..31
3.6. Design ..32
3.7. Conclusion ...32

4. PRACTICAL RESULTS..34
4.1. A Band Pass Filter..34
4.1.1. First Execution ...35
4.1.2. Second Execution...36
4.2. An Amplifier ..37
4.2.1. First Execution ...38
4.2.2. Second Execution...39
4.2.3. Third Execution..40

iv

4.3. A Frequency Splitter ..42
4.4. Conclusion ...44

5. CONCLUSION...46
6. REFERENCES ...47
APPENDIX A USER DOCUMENTATION.. A-1

A.1. Prerequisites ... A-1
A.2. Installation.. A-1
A.3. Usage.. A-1
A.4. Input File .. A-1
A.4.1. Section CONFIGURATION.. A-1
A.4.2. Section LINKS... A-4
A.4.3. Section NODES ... A-4
A.4.4. Section OPERATIONS.. A-4
A.4.5. Section OPT ... A-6
A.5. Output Files.. A-7

APPENDIX B PROGRAM EXTENSION EXAMPLES.......................... B-1
B.1. New Circuit Element Implementation .. B-1
B.2. New Circuit Operation Implementation.. B-3

APPENDIX C CD-ROM CONTENT.. C-1

1

0. Introduction

Evolutionary and genetic algorithms are powerful multi-purpose optimization
tools that model the principles of evolution. They are often capable of finding
globally optimal solution even in the most complex search spaces.

The mission of this thesis is to propose and implement an evolutionary
(single-member population) algorithm for designing microwave circuits. The
main goal is to present a possibility of usage of evolutionary algorithms in
computer aided design of microwave circuits, not to produce some universal
designing product.

The computer aided design of microwave circuits represents tools for design,
evaluation and optimization of microwave circuits. Nowadays, optimization in the
microwave circuit design means finding circuit element values for a fixed circuit
topology, where the circuit topology can be e.g. an input parameter. A different
approach is presented in this work: the design of a microwave circuit is left
completely to the evolutionary (design and optimization) algorithm. Input
parameters include design goals (e.g. required frequency response), number of
circuit ports and a set of available circuit elements. The evolutionary algorithm
then sets up different circuit topologies, and the topology that satisfies goals is an
output parameter, together with circuit element values.

The thesis is organized in several chapters. In the first chapter, the general
principles and methods of evolutionary algorithms are described, with the main
emphasis on their usage in the circuit design. In the second chapter the algorithm
for the design of microwave circuits is proposed. The implementation of the
proposed algorithm in Java is outlined in the following third chapter. The fourth
chapter contains some practical results achieved with the implemented algorithm
on some basic assignments. There are also several appendixes. A user
documentation of the implemented program is included in appendix A. In
appendix B, some examples of extensions of the implemented algorithm are
shown. Finally, appendix C contains an organization structure of the CD-ROM,
which is included in the thesis.

2

1. Evolution

Evolutionary (genetic) algorithms are powerful general purpose optimization
tools which model the principles of evolution [1, 10, 11]. They are often capable
of finding globally optimal solution even in the most complex search spaces. They
operate on a population of members which are selected according to their quality
and then used as the basis for a new generation of members found by combining
(crossover) and/or altering (mutating) current individuals.

1.1. Genetic Algorithms
A genetic algorithm [10, 11] starts by generating an initial population (a set of

initial solution candidates, members). Basically, each member is represented by a
set of genes, encoded as a bit string with the fixed length.

The algorithm works in iterations, evolutions of a population. In each
evolution step, a new population is produced from the previous one. There are
several methods how to produce a new population. Most of them use three
different operators:

• selection of two parents (e.g. according to some evaluation of parents)
• crossover of parents (e.g. combining of their genes)
• mutation of the arose individual (e.g. by swapping several genes)

An example of a new population creation
is presented in Figure 1.1. It starts with an
empty generation. Until this new generation
has the demanded number of members: Two
members are selected (via selection operator)
from the parent population and combined (via
crossover operator). The resultant individual
is then altered (via mutation operator) and
placed into the new population.

The algorithm stops when there is a
suitable solution found. It means that there is
a member in the new population which fits the
input requirements. Otherwise, the new
population becomes the parent population for
a new evolution step.

Another version of the genetic algorithm
can for example work with the crossover of
two arbitrary (randomly selected) members
from the parent population, where only those
created individuals that are good enough are
placed into the new population. The selection
is moved after crossover and mutation
operator in this example.

Mutation
Operator

Crossover
Operator

Selection

Parent Population

New Population

Figure 1.1. An evolution step

3

Typically, the number of members in a population is constant during the
search. However, there are also approaches in which the number of population
members differs during the search (e.g. according to their quality) [8].

The selection of the two members from the parent population can be based on
the possibility of evaluation of these candidates. Whether it is possible to evaluate
each member, which means that there is a mapping function of each member to a
number according to its quality. Or whether we can only compare two members
and say which of them is better. In the first case, the probability of a selection of a
candidate can be guided according to its evaluation. For example:

∑
∈

=

Ms

a seval
aevalP)(

)(

Figure 1.2. Probability of acceptance according to the evaluation

where a is a member from population M and eval is the evaluation function (a
better solution corresponds to a higher number). This approach is called roulette
wheel selection, see [8] for details. In the second case, where we can only
mutually compare two members, the tournament selection can be used [8]. In such
case, the selection is made in several rounds. In the first round, two members are
selected randomly (with uniform probability) and the better one is used for the
second round. In each next round, one member is taken randomly and compared
to the previous winner (previous better solution). After several rounds, the winner
is returned as the selected element. Another possibility of organizing the
tournament is based on a binary tree, where in each round, the number of
candidates (from the initial randomly selected subset of the population) is divided
by two.

Often, the crossover operator is the most crucial step in the design of a genetic
algorithm. Traditionally, the search mechanism has been domain independent.
That means the crossover and mutation operators have no knowledge of the
problem and what a good solution would be. They are working with members
represented as binary strings, combining and mutating their genes. For example,
the crossover operator can be designed as splitting of the genes into the two parts
(e.g. genes at odd or even position in the bit string) and combination these parts
from the respective parents (e.g. odd bits from the first parent, even bits from the
second, as shown in Figure 1.3). The mutation operator can be than designed as a
switch of randomly selected fixed number of genes (e.g. three genes are swapped
in Figure 1.4).

 100111110111011101
 010111110100111011
 110111110110011001

Figure 1.3. Crossover operator example

 110111110110011001
 110101110100011101

Figure 1.4. Mutation operator example

4

The disadvantage of this approach is that the given solution (e.g. circuit
represented by the bit string) is often much different from both parent solutions. In
many cases [8, 11], it was empirically shown that the use of domain dependent
operators is much more efficient in practice. Such operators are trying to obtain a
solution which is better than both its parent solutions, e.g. a solution which takes
the best “features” from both parents. In some literature [2], such algorithms are
called memetic algorithms, because they are working with bigger entities than
genes (called memes).

1.2. Evolutionary (single individual population, local search) algorithms
Because of the computational demands and high complicatedness of design of

crossover operator for the microwave circuits (members of a population), we will
focus on (in some sense extreme) case of the genetic algorithm, where the
population has always cardinality equal to one. In each evolution step, the algorithm
takes the previous (parent) solution and by its mutation it creates other (children)
solutions from it. Finally, one of the generated solutions is picked up to be the parent for
the next iteration step.

There are naming differences: Such algorithms are sometimes called
evolutionary (to distinguish them from genetic algorithms, which work with
bigger population). But sometimes, the expression evolutionary algorithm is used
for the class of all algorithms, which mimics the process of evolution (genetic
algorithms belong to this class of evolutionary algorithms).

This single-member population approach can also be considered as a variation
of the local search algorithms. These algorithms also work in iterations, with one
infeasible solution. In each iteration step, neighbour solutions from the previous
solution are generated and evaluated. At the end of the iteration, one neighbour
solution is selected into the next iteration. The purpose of these algorithms is
simple: They are repeatedly trying either to decrease the number of
inconsistencies in the solution and/or to get closer and closer to some optimal one.

Recently, there have been developed many kinds of the local (neighbour)
search algorithms (e.g. hill climbing, steepest descant, min-conflict, genet) and
their improvements (e.g. random walk, tabu-list, simulated annealing). We will
discuss some of these algorithms in the following subsections.

Genetic algorithms with a single member population and local search
algorithms work in iterations, always with one configuration (or state, solution,
solution candidate). In the design of microwave circuits, such configuration will
be a microwave circuit (both with topology and values of all circuit elements).
Each such solution should have an evaluation value and a set of neighbour
solutions defined. For us, value of a circuit can express its difference from the
required, searching solution. The neighbour solutions can be defined as a circuits
derived from the previous one by applying a mutation operator. Such mutation
can be for example a change of a single circuit element, or some circuit value or a
simple change of circuit topology.

5

1.2.1. Hill-Climbing
Hill-climbing (or steepest-descendant) is probably the most famous algorithm

of local search [7, 8]. The idea of hill-climbing is following:

1. start at randomly generated configuration
2. move to the neighbour with the best evaluation value
3. if a strict local-minimum is reached (there is no better neighbour) then

restart at another randomly generated configuration
4. if sufficient (required) configuration is found then return solution
5. otherwise repeat to step 2

The hill-climbing procedure repeats local steps to neighbourhood till the
solution is found or the time exceeds the limit for the computation. Visibly, the
algorithm does not guarantee to find the best solution but it can return any
"solution" at each time (the longer time, the better solution). Therefore, this
algorithm (and all other algorithms in this section) belongs to the group of
anytime algorithms that are able to return some "reasonable" solution at each time.
The name of the algorithm, hill-climbing, is derived from its original principle
when a maximum was searched by climbing – increasing the evaluation value
(note, that are descending now because of looking for the minimum).

In the algorithm presented in Figure 1.5, the parameter max_flips is used to
limit the maximal number of moves between restarts which helps to leave non-
strict local minimum. The resultant solution has to have the evaluated value below
the limit.

procedure HC(max_moves, limit)
 restart: s <- random initial configuration;
 for j:=1 to max_moves do
 if eval(s)<=limit then return s;
 if s is a strict local minimum then
 go to restart;
 else
 s <- neighbour with smallest evaluation value;
 end if
 end for
 go to restart;
end HC

Figure 1.5. Hill Climbing algorithm

Remark that the hill-climbing algorithm has to explore all neighbours of the
current state before choosing the move. In general, this can take a lot of time. To
avoid exploring all neighbours of the current configuration some alternatives were
proposed to find the next move.

For example, randomized hill-climbing are repeatedly choosing the neighbour
randomly, until a better neighbour than the current solution is found. This
neighbour is choosen for the following iteration.

Another approach is to select neighbours acording to some heuristics, some
ordering of neighbours according to their quality. Again, until the first better
neighbour than the current state is found.

6

1.2.2. Hill-Climbing-Random-Walk
Because the pure hill-climbing algorithm cannot go beyond a local-minimum,

some noise strategies were introduced here. Among them, the random-walk
strategy becomes one of the most popular [6]. For a given configuration, the
random-walk strategy picks randomly a neighbour with probability p, and apply
the hill-climbing strategy (e.g. selection of the best neighbour) with probability 1-
p. See Figure 1.6.

procedure HCRW(max_moves, limit, p)
 s <- random initial configuration;
 nb_moves <- 0;
 while eval(s)>limit & nb_moves<max_moves do
 if probability p verified then
 s <- randomly choosen neighbour;
 else
 s <- neighbour with smallest evaluation value;
 end if
 nb_moves <- nb_moves + 1;
 end while
 return s;
end HCRW

Figure 1.6. Hill Climbing Random Walk algorithm

This algorithm is controlled by the random probability p, it should be clear
that the value for this parameter has a big influence on the performance of the
algorithm. The preliminary studies determined the following feasible ranges of
parameter values 0.02 <= p <= 0.1.

1.2.3. Tabu-Search
Tabu search [3, 8] is another method to avoid cycling and getting trapped in

local minimum. It is based on the notion of tabu list, that is a special short term
memory that maintains a selective history, composed of previously encountered
configurations or more generally pertinent attributes of such configurations (the
change of the configuration, e.g. a pair <circuit_element, circuit_value> when
there is only moves changing a value of an arbitrary circuit element – no topology
changes). A simple TS strategy consist in preventing configurations of tabu list
from being recognised for the next k iterations (k, called tabu tenure, is the size of
tabu list). Such a strategy prevents Tabu from being trapped in short term cycling
and allows the search process to go beyond local optima.

Tabu restrictions may be overridden under certain conditions, called
aspiration criteria. Aspiration criteria define rules that govern whether next
configuration is considered as a possible move even it is tabu. One widely used
aspiration criterion consists of removing a tabu classification from a move when
the move leads to a solution better than that obtained so far. See Figure 1.7.

Again, the performance of Tabu Search is greatly influenced by the size of
tabu list tl. A preliminary studies determined the following feasible range of
parameter values 10 <= tl <= 35.

7

procedure TS(max_moves, limit)
 s <- random initial configuration;
 nb_moves <- 0;
 initialise randomly the tabu list;
 while eval(s)>limit & nb_moves<max_moves do
 choose a move, e.g. <element, value> with the best
 performance among the non-tabu moves and the moves
 satisfying the aspiration criteria;
 introduce the move, e.g. <element, value> in the tabu list;
 remove the oldest move from the tabu list;
 apply the move to the s;
 nb_moves <- nb_moves+1;
 end while
 return s;
end TS

Figure 1.7. Tabu Search algorithm

1.2.4. Simulated-Anealing
Another meta-heuristic method allowing escape from a local minimum is

called simulated annealing [5, 8]. The algorithm is derived from the physical
process of cooling of a metal in a thermal bath. Quality of the output material is
reached so, that the material is alternately heated and cooled.

Similarly to the algorithms described above, this algorithm gradually goes
from one configuration to another by repeatedly selecting one of the neighbour
configuration randomly. If the solution has lower evaluation value, it is
automatically chosen to the next iteration. But, if the randomly selected neighbour
has higher evaluation value, if has also a chance to be chosen, according to the
following probability

T
sevalseval

ep
)'()(−

=
Figure 1.8. Probability of acceptance for simulated annealing

where s is the previous solution, s’ is the randomly selected neighbour
solution and T denotes the actual temperature. The algorithm is gradually
changing this temperature according to some cooling schedule, which is a part of
the algorithm’s configuration. While the temperature is decreasing, the probability
of choosing the worse neighbour is decreasing as well. So, the whole process is
based on the selection of the cooling schedule. This schedule can be also chosen
for a particular problem during the execution, e.g. to avoid premature cool down.
The algorithm is shown in Figure 1.9.

procedure SA(max_moves, limit)
 s <- random initial configuration;
 for j:=1 to max_moves do
 if eval(s)<=limit then return s;
 s‘ <- random neighbour of s;
 if (eval(s’)>eval(s)) or
 (random(0,1)<exp[(eval(s)-eval(s’))/T]) then s=s’;
 T = g(T,j);
 end for
 return s;
end SA

Figure 1.9. Simulated Annealing

8

1.2.5. Stochastic Hill-Climbing
Similar algorithm to the simulated annealing is the algorithm called stochastic

hill-climbing (sometimes also called simulated-annealing) [8]. The main
difference is, that every randomly selected neighbour (even better) is selected
according to some probability. The traditional probability of acceptance of a
neighbour solution is

T
sevalseval

e
p)()'(

1

1
−

+
=

Figure 1.10. Probability of acceptance for stochastic hill climbing

again, where s is the previous (parent) solution, s’ is the randomly selected
neighbour and T is the current temperature. Function eval denotes the solution’s
evaluated value. See the following Figure 1.11.

procedure SHC(max_moves, limit)
 s <- random initial configuration;
 for j:=1 to max_moves do
 if eval(s)<=limit then return s;
 s‘ <- random neighbour of s;
 if (random(0,1)<1/(1+exp[(eval(s’)-eval(s))/T]))
 then s=s’;
 T = g(T,j);
 end for
 return s;
end SHC

Figure 1.11. Stochastic Hill-Climbing

The following example table (Figure 1.12.) shows the probability of
acceptance for the better neighbour solution (the difference of evaluated values is
equal to -13) according to the chosen temperature T. At the beginning, when the
temperature is high, the probability of acceptance goes to one half. During the
search, while the temperature is decreased, the probability of acceptance of a
better neighbour solution goes near to one.

T Te /13− P
1 2e-7 1.00
5 0.0743 0.93
10 0.2725 0.78
20 0.52 0.66
50 0.77 0.56
10e10 0.9999 0.500..

Figure 1.12. Probability of acceptance a solution for
eval(s’)-eval(s) equals to -13 according to temperature T

9

The limit case is, when the temperature limitary goes to zero, the better
neighbour solution is always accepted (probability goes to one) and the worse
neighbour solution is always declined (probability goes to zero).

1.2.6. Local Search
All above algorithms are based on common idea known under the notion local

search [8]. In local search, an initial configuration is generated and the algorithm
moves from the current configuration to neighbourhood configurations until a
solution (decision problems) or a good solution (optimization problems) has been
found or the resources available are exhausted. This idea is expressed in the
following general local search algorithm that enables implementation of many
particular local search algorithms via definitions of specific procedures, see
Figure 1.13.

procedure LS(max_tries, max_moves, limit)
 s <- random initial configuration;
 for i:=1 to max_tries while Gcondition do
 for j:=1 to max_moves while Lcondition do
 if eval(s)<=limit then return s;
 select n in neighbourhood(s);
 if acceptable(n) then s<-n;
 end for
 s <- restartState(s);
 end for
 return s;
end LS

Figure 1.13. Local Search algorithm scheme

1.3. Conclusion
In this chapter, various basic approaches which mimic an evolution of a single

individual have been described. In the following chapter, we will propose an
evolutionary algorithm for design of microwave circuits on the basis of this
knowledge.

Remark that not all of the above presented methods are suitable for an
evolution of a single circuit. For example, it is either impossible or at least not
effective to evaluate all the neighbours of a circuit, because of the non-discrete
character of circuit elements’ values. For the same reason (large or infinity
cardinality of the circuit’s neighbourhood), the tabu-list technique will be also
inefficient – a local optimum can also have excessively large neighbourhood.

10

2. The Algorithm Proposal

In this chapter, we will at first summarize the requirements for the
evolutionary design algorithm. Next, we will discuss the representation of a
circuit, which will be our individual configuration during the evolutionary search.
Then, we will propose an evaluation of circuits and we will define the circuit’s
neighbourhood. Finally, we will describe an evolutionary algorithm handling our
requirements and propose several improvements to it.

2.1. Algorithm Requirements
As the input, we have the requirements for the wanted microwave circuit,

namely:

• the number of circuit ports,
• design goals, e.g. frequency response or in more general any

requirements derivable for the S-parameters over the given finite set of
frequencies,

• a set of available circuit elements

The goal of the algorithm is to find out a circuit, which will meet the above
mentioned requirements. Output of the algorithm should be a structure of the
resultant circuit (topology) and values of all used circuit elements. We will
discuss some other requirements (e.g. planarity of the resultant circuit) later.

As prerequisites, we can assume that we have a (3rd party) tool, which can
provide us an analysis for the given circuit. In the algorithm implementation, the
program MIDE [9] is used (possibility of use program MIDE was a part of the
assignment of this work). This program can calculate the S-parameters for the
given circuit on the given frequency or on finite set of frequencies. But, this tool
also makes some demands on the algorithm, namely:

• We has to use circuit elements compatible (known by) the analysis
tool.

• Our circuit representation has to be same or easily transformable to the
representation understandable by the analysis tool (this structure is
called net-list in MIDE, see [9] for details).

• The analysis tool has to provide us some API, so we can repeatedly use
it (with no user interaction required).

• There can be some limitation of the size of the circuit demanded by the
analysis tool.

2.2. Circuit Representation
There are several demands on the representation of a microwave circuit, which

we will use. At first, the circuit representation has to be able describe an arbitrary

11

circuit (its topology, circuit elements and values of their parameters) we can
obtain during the design process. Next, we has to be able to define a set of
neighbour circuit to the given circuit representation and also enumerate
representations from this neighbourhood. And finally, the representation has to be
convertible to the representation required by the analysis tool.

Therefore, the circuit is represented as a graph),(EVG = , with vertices
},,{ 21 nvvv L=V and edges 2

21 },,{ VE ⊆= meee L between these vertices. Every
edge represents an element (resistor, capacitor, inductor, micro-stripe line, …),
every vertex represents an input/output gate, a connection between one to four
elements (ideal or non-ideal) or an element with one or more than two ports (e.g.
short end, open end, bounded wiring, …). The conversion between this
representation and the net-list used by program MIDE is straightforward. An
example is shown in the following figures:

Vertices },,,{ 4321 vvvv=V :

1v … input/output port

2v … input/output port

3v … 3-port ideal connection

4v … short end
Edges)},(),,(),,{(432331 vvvvvv=E :

resistors 1R , 2R , 3R respectively
Figure 2.1. Circuit representation

BLO circuit 1 2
 RES 1 3 R=R1 edge (v1,v3) .. resistor R1
 ITEE 3 4 5 vertex v3
 RES 4 6 R=R3 edge (v3,v4) .. resistor R3
 SHORT 6 vertex v4
 RES 5 2 R=R2 edge (v3,v2) .. resistor R2
END

Figure 2.2. Respective net-list for the circuit from Figure 2.1

For ability of a direct connections of two elements represented by vertices
(e.g. Figure 2.1. without resistor 3R - short end connected directly to vertex 3v),
there is not strictly required for an edge to have assigned a circuit element. In the
implementation, such edge has assigned a special element called zero element.
Such edges are not included in the resultant net-list structure. Zero elements are
also used for vertices with ideal connection of two edges.

So, the above described representation of a circuit gives us a possibility to
represent an arbitrary circuit and it is easy transformable to the net-list
representation (implemented by simple listing of all edges and vertices, where
each edge have assigned two unique numbers, one for each end). Representation
of a circuit as a graph gives us also a huge possibility to define several kinds of its

R1 R2

R3

 v1 v2v3

 v4

1 3 5 2

4

6

12

neighbours, e.g. by simple graph operations, for example by adding an edge or
splitting an edge into two edges connected with a new vertex.

Remark that according to the net-list structure, input and output ports can be
connected exactly to one circuit element and each port (denoted by its number)
can be shared by exactly two different circuit elements – it has to occur in the net-
list exactly twice. There are special elements for connection of more than two
ports (e.g. ITEE for ideal connection of three ports – see Figure 2.1 and 2.2). This
behaviour has to be propagated into the representation, namely:

• Input/output vertices can have only one edge.
• Each inner vertex can contain at least one and at most four edges

(because there is no connection element for more than four ports in
MIDE).

• Graph has to be connected. It means, that there has to exist a path
between each two different vertices in the graph.

• Each vertex and edge has to have an appropriate circuit element
associated. And such element has to have the correct number of ports
(two for the edge, number of edges connected to vertex for the vertex).
There are two special elements: An element denoting that the vertex is
an input/output port (appropriate number of such elements has to be
used). A zero element as described above.

• Each circuit element has to have appropriate parameters assigned: In
dependence of the type of an element, it can contain zero, one or more
parameters with assigned values of respective type and from respective
bounded domain (interval). For example, a resistor contains one
parameter, its resistance (measured in ohms) from the interval of
values <0.001;155555>. There is also an implicit value defined, e.g.
for the resistor it is 50 ohms.

2.3. Evaluation of Circuits
As it is mentioned above, the external analysis tool MIDE is used for the

evaluation of a circuit on the given frequency or on the given finite set of
frequencies. Such evaluation gives us a square matrix of S-parameters for each
frequency, which represents S-parameters between each pair of input/output ports.
From such evaluation we would like to compute one real number denoting the
quality (or closeness) of the circuit to the input requirements. Resultant function is
called objective function.

At first, the set of frequencies, which will be used in analysis can be derived
from the requirements. Remark, that our requirements are defined as requirements
derivable from S-parameters (e.g. frequency response) on the given finite set of
frequencies. For example, we can require the transmission of a filter between
1GHz and 3GHz step 100MHz (it means on frequency 1GHz, 1.1GHz, 1.2GHz,
… 3GHz) to be below -25dB.

So, we have requirements on the given frequencies and computed
characteristics for the given circuit. Than we can compute the root mean square
(RMS) error from differences between these results and requirements, as follows:

()()∑ ∑
∈ ∈

F RRF f fR
fR Sdiff

f)(

2

)(
11

Figure 2.3. Definition of RMS error

where },,{ 21 nfff L=F is a finite set of given frequencies,)(fR denotes the set
of requirements on the given frequency, fS are the computed S-parameters for the
frequency f and ()fR Sdiff denotes the difference between the computed S-
parameters fS and the requirements R, so that the difference is zero, if the
requirement is met. For example, in case of a requirement expressed as an
inequality, e.g. transmission to be below -25dB, the difference is zero if the
transmission is bellow the given limit. Otherwise it expresses the difference of
required and measured transmission in decibels.

An example of
filter. The requirem
the given circuit i
computed as the ro
below respective a

As follows fro
The wanted circuit

Remark, that t
gives us for examp
f1 and f2 in Figure
can also set a lim
optimal solution (
with the RMS erro
can be sufficient fo
one (with RMS err

amin

amax
 a
13

Figure. 2.4. RMS error for a low-pass filter:
only differences in shaded areas are considered

 evaluation is indicated in the above Figure 2.4 for a low-pass
ents are denoted by the shaded rectangles, the transmission of

s denoted by the thick black line. The resultant RMS error is
ot mean square of the differences, marked as vertical red lines

bove the computed characteristics of the given filter.
m the above description, we want to minimize this RMS error.
 is found, when this objective function is equal to zero.
he requirements (and the differences) can be also weighted. It
le a possibility to put some stress to some key frequencies (e.g.
2.3), what can help the algorithm faster reach the optimum. We
it for the RMS error, which says that we do not require an

with all requirements met - error equal to zero) but a solution
r below this limit. For example, a circuit with error below 1 dB
r us. Such solution can be much easier to find than the optimal
or equal to zero).

f1 f2

14

2.4. Circuit’s Neighbourhood
As described in the previous chapter, in each evolution step, a solution (or

configuration) is derived somehow from the previous solution. This can be also
seen as selection of an element from the solution’s neighbrour solutions. In this
paragraph we will discuss a neighbour circuit creation from the previous circuit by
applying one of the “circuit” operation. Most of these operations are deducted
from the graph representation of a circuit described above.

Let’s define a circuit neighbourhood as a set of circuits created by applying of
one of the below listed operations. An operation is applied only if the resultant
circuit is consistent – it is connected, there is no vertex with more than four edges
and every vertex has an appropriate circuit element associated (with the correct
number of ports).

The operations are:
O1. A parameter of some circuit element is changed. (e.g. resistor’s

resistance is changed).

Figure 2.5. A parameter of some element is changed

O2. A circuit element associated to a vertex or to an edge is replaced
by another suitable one (with the same number of ports, e.g. a
resistor is changed to a capacitor).

Figure 2.6. A circuit element is replaced by another one

O3. An edge is added between two suitable vertices (with the number
of connected edges below four, not i/o vertices). Elements of
respective vertices are changed – the number of ports is increased by
one. An arbitrary suitable circuit element (2-port) is associated to the
created edge.

Figure 2.7. An edge is added between two vertices

1 k 2. 3 k

1 k 1.3 u

 R1 R2

 R3

 R1 R2

 R3 C’4

15

O4. An edge is removed. Elements of appropriate vertices are changed –
the number of ports is decreased by one. The graph has to remain
connected.

Figure 2.8. An edge is removed

O5. A vertex (with two or more edges) is split up into two vertices and
an edge is added between them. Suitable circuit elements are
assigned with the created vertices and the created edge.

Figure 2.9. A vertex is split up to two vertices

O6. A single-edge vertex is created and connected with an edge to
suitable vertex (with less then four connections, not i/o vertex).
Suitable elements are assigned to the changed vertex and to the
created edge and vertex.

Figure 2.10. A vertex is created and connected to a suitable vertex

O7. An arbitrary edge is split into two edges and a vertex is added
between them. Suitable elements are assigned to the created edge
and vertex.

Figure 2.11. An edge is split into two edges with an edge between

O8. A vertex with one edge (not i/o vertex) is removed. The
appropriate edge is also removed. The element on the other side of
the removed edge is changed.

R

R’

 R1 R2 R1 R2

R’3

R C’ R’

16

Figure 2.12. A single-edge vertex is removed

O9. A vertex with two edges is removed. The appropriate edges are
joined into the one edge. Suitable element is assigned the created
edge (e.g. an element from one of the removed edges is used).

Figure 2.13. A vertex with two edges is removed.

O10. Two suitable vertices connected with an edge are joined into the
one vertex. The edge between the previous vertices is removed.
Suitable elements are assigned to the created edge and vertex.

Figure 2.14. Two connected vertices are joined

There are also many other possibilities what operations to use, for example the
above operations can be adopted not to violate planarity of the circuit (e.g.
operation O3 can break the planarity if it remains defined as above). There can
also be other circuit limitations introduced, e.g. for the maximum number of
elements, elements of given type or physical feasibility of the resultant circuit.

Each circuit element, which can be used has a defined set of its parameters
with minimal and maximal bounds and implicit values. When an edge or a vertex
is created or changed, an appropriate element is selected randomly (or according
to some heuristics). The element’s parameters are selected from the log-normal
distribution with the mean value equal to the parameter’s implicit value. When a
parameter is changed (the operation O1 in the above list), a new value is selected
again from the log-normal distribution, but with mean value equal to the
parameter’s previous value.

Remark, that there are also operations for simplifying the graph (e.g. by
removing an edge or a vertex). It gives us possibility to return (e.g. from some
local-minima) in local search algorithm.

Also remark, that the neighbour of a circuit can be extremely large even if the
parameters of all circuit elements will have finite domains (obtained by fixed
accuracy of the parameters). Only for adding an edge we have approximately m2

possibilities how to select the vertices (m is number of vertices), exactly:

 R1 R2 R1 R2

R3

C R R’

R

17

()1−′⋅′ VV
Figure 2.15. Number of possibilities to add an edge

where V′ is the set of the suitable vertices (all vertices except the vertices
with assigned i/o element and vertices with four edges connected). Next, for such
selection of suitable vertices, we have also many possibilities what element to
select to the created edge and what values to assign to the parameters of the
selected circuit element.

2.5. Initial Configuration
Till now, we have defined input requirements, a representation of an arbitrary

microwave circuit and its evaluation. We have also described circuit’s neighbour
solutions. But for the design of an algorithm, there is still one thing missing. We
have to define the initial configuration, the circuit which we will start from. But
this task is rather easy, we can for example create a graph with directly connected
input/output vertices. Some inner vertices can occur, as shown in Figure 2.16 for 3
input/output ports.

Input/output vertices: },,{ 321 vvvio =V
BLO CIRCUIT 1 2 3
 ITEE 1 2 3
END

Figure 2.16. Initial 3-port circuit and the appropriate net-list

2.6. Algorithm
Now, we are ready to propose an algorithm for the evolutionary design of

microwave circuits. This algorithm works with single member population and it is
derived from the local search technique. An initial proposal of such algorithm is
shown in the below Figure 2.17.

procedure EDMC-LS(max_iters)
 s <- initial circuit; //initial solution
 err <- eval(s); //RMS error of the initial solution
 i <- 0; //iterations counter
 while i<max_iters end err>0 do
 op <- select_operation(); //operation selection
 s’ <- apply_operation(s,op); //operation application
 err’ <- eval(s’); //new RMS error
 if acceptable(err,err’) then //accept change
 s <- s’;
 err <- err’;
 end;
 i <- i + 1; //increase iteration counter
 end while
 return s;
end EDMC-LS

Figure 2.17. Local search algorithm

 v1 v2

v3

v4

18

The algorithm works in iterations. It starts from the initial solution, which is a
simple circuit with only input/output ports connected (as described in section 2.5.
and Figure 2.16).

In each iteration step, an operation is selected somehow and it is applied to the
current solution. If the altered solution is acceptable (e.g. it is better then the
current), it becomes the current solution for the next iteration. Otherwise, it is
refused.

The iteration process stops when the requested solution (with RMS error equal
to zero, or less then given limit) or the maximum number of iterations is reached.
In case of the reach of the maximum number of iteration, the algorithm can

• return fail – requested solution was not found
• return the best solution ever found – the solution with the lowest

evaluation (RMS error). Remark, that in case of random walk,
simulated annealing or stochastic hill climbing, the best solution need
not be the current solution from the last iteration. The algorithm can
sometimes accept worse solution to the next iteration.

• restart the search from the beginning (or maybe from some previous
memorized solution). This makes sense only when the above described
algorithm is somehow randomized: The selection of an operation (and
its operands – edges, vertices, circuit elements, their parameters)
and/or solution acceptance is not deterministic.

The above described algorithm is parameterized by two functions: The first
one is the selection of an operation to be applied on a current circuit solution. The
second one is the acceptance criterion for an altered circuit.

2.6.1. Operation Selection
For the operation selection criterion, we propose the operations to be selected

randomly, but with the respect of their weights. This gives us a possibility to
determine the frequency of use of each operation. So, for example, the
modification of a single parameter or circuit element can be more frequent than an
insertion of an edge. This way, we can also drive the speed of magnification of the
circuit’s complexity. These weights can also be changed during the search, e.g.
according to the current solution, its complexity and evaluation or according to
some statistics of successfulness of the previous operation and operands
selections. After an operation is selected, there has to be also its operands
selected, namely:

• appropriate vertices and/or edges, required for the operation (e.g. a
suitable pair of vertices for adding an edge)

• appropriate circuit elements for new or altered edges and vertices (e.g.
an element for a new edge and for the two altered vertices when there
an edge should be added)

• parameters of the new or altered circuit elements
These operands can be selected also randomly, uniformly or with respecting

some priorities from the set of suitable vertices, edges and circuit elements.

19

We already proposed (in the section 2.4) to select parameters of a circuit
element from the log-normal distribution respecting the parameter bounds and its
previous (in case of altering the parameter, see operation O1) or its implicit value
(in case of new circuit element). The distribution will have the mean value equal
to the previous or implicit value. When a value outside the bounds is selected, the
appropriate maximum or minimum bound value is returned. The reason of
choosing the log-normal distribution is based on the idea of selecting a value not
too different from the previous or implicit value. For example, when there is a
resistor with implicit resistance 50 ohms, we want the most of the new resistance
values to be selected from the interval <0.5,5000> ohms – plus/minus two orders.

2.6.2. Acceptance Criterion
There were several types of acceptance criteria described in the first chapter of

this thesis. We can accept only better circuits, introduce random walk
technology (besides accepting only better circuits, we accept an arbitrary solution
with some small probability), simulated annealing (probability of acceptance of
worse solution depends on the difference, how much worse the solution is) and
stochastic hill climbing (probability of acceptance of any solution depends on its
quality according to the previous one). We propose to use either simulated
annealing or stochastic hill climbing in the implementation because we need to
escape a local minimum, e.g. when there is a long sequence of worse neighbour
solution generated – to try select one of them. But we also do not want to select
too bad neigbour.

We use only a simple schedule of the temperature in the simulated annealing
techniques: the temperature is linearly decreasing from an initial temperature to
some minimal (almost zero) temperature. After this minimum is reached, the
temperature remains constant for the rest of the search.

2.7. Algorithm Improvements
Because the above described algorithm was unable to find a solution in

reasonable time for many even simple toy instances, in the following paragraphs
we will propose several improvements, developed for the better efficiency and
stability of the algorithm.

2.7.1. Local (Parameter) Optimization
Because the selection of an operation and its operands can be rather expensive

and because it will probably fail many times only just because the wrong
parameters of the created or altered circuit elements are selected. We propose to
try to change these parameters several times before the operation is totally
rejected.

For example, when there is a need to decrease a single parameter of one
element: Once this parameter (and appropriate operation which do this) is
selected, we can improve the efficiency if the change of the parameter is tried
several times. It can be also sometimes accepted during this, e.g. when the change
of the parameter goes to the right direction (circuit’s evaluation value decreases).

20

This can be seen as a simple optimization of the selection of the new or altered
elements’ parameters. Improved algorithm is shown in Figure 2.18.

procedure EDMC-LSO(max_iters, max_tries)
 s <- initial circuit; //initial solution
 err <- eval(s); //RMS error of the initial solution
 i <- 0; //iterations counter
 while i<max_iters and err>0 do
 op <- select_operation(); //operation selection
 s’ <- apply_operation(s,op); //operation application
 err’ <- eval(s’); //new RMS error
 for t:=1 to max_tries do
 if acceptable(err,err’) then //accept change
 s <- s’; err <- err’;
 end if
 s’ <- alter_parameters(s,op); //modify solution
 err’ <- eval(s’); //new RMS error
 end for
 i <- i + 1; //increase iteration counter
 end while
 return s;
end EDMC-LSO

Figure 2.18. Local search algorithm with local optimization

2.7.2. Backtracking
Because the algorithm can struggle in some local optimal solution, where all

neighbour solutions are worse, there has to be a technique to get out of this point.
There are two basic methods: The first one restarts the search process after a local
optimum (or the maximum number of iteration) is reached. The second one tries
to avoid staying in some local optimum point by randomization of the search (e.g.
random walk techniques).

Empirical results has shown, that a use of only the second technique
(simulated annealing and hill climbing was tested) can sometimes lead to a circuit
which is very hard or almost unable to improve (e.g. the circuit is too complex).

So, we proposed to use also the first method, but we do not restart from the
beginning of the search. After a certain amount of iterations, the solution is
memorized and compared to the previous memorized one. If the solution is not
much better (e.g. the RMS error of the solution is not 10% or more lower than the
RMS error of the previous solution), the algorithm jumps back to the previous
memorized solution. Each such memorized solution has also included a counter of
these back jumps to it. If this counter exceeds some value, the algorithm does not
jump back to it, but to its memorized ancestor. In some sense, this approach
mimics a backtracking search.

An example of such behaviour is shown in Figure 2.19. After each N iterations
are applied, the solution is compared to the previous memorized one or initial
when there is no previous memorized solution – called choice point, denoted by
circle. When the solution is not much batter (e.g. evaluation of a solution is not
less then the evaluation of the previous memorized (or initial) solution decreased
by 10%) the solution is rejected (denoted by cross) and the search continues again
from the previous memorized (or initial) solution. The amount of executions the
search from memorized solution is limited to four in the below example. When

21

this number is reached the memorized solution is also rejected (denoted by
crossed circle) and the search starts from the previous memorized one etc.
Improved algorithm is shown in Figure 2.20.

Figure 2.19. Memorizing solutions, backtrack approach

procedure EDMC-LSOB(max_iters, max_tries, max_backs)
 s <- initial circuit; //initial solution
 err <- eval(s); //RMS error of the initial solution
 b <- 0; back[b].s <- s; //memorize initial solution
 back[b].err <- err;
 back[b].backs <- 0; //number of returns to the solution
 while b>0 or backs[b]<max_backs do
 i <- 0; //iterations counter
 while i<max_iters and err>0 do
 op <- select_operation(); //operation selection
 s’ <- apply_operation(s,op); //operation application
 err’ <- eval(s’); //new RMS error
 for t:=1 to max_tries do
 if acceptable(err,err’) then //accept change
 s <- s’; err <- err’;
 end if
 s’ <- alter_parameters(s,op); //modify solution
 err’ <- eval(s’); //new RMS error
 end for
 i <- i + 1; //increase iteration counter
 end while
 if (err=0) then return s; //return solution if found
 if (err<back[b].err*0.9) then //new choice point
 b <- b + 1;
 back[b].s <- s; //memorize solution
 back[b].err <- err;
 back[b].backs <- 0;
 end else //back to previous choice point
 s <- back[b].s; //return to memorized solution
 err <- back[b].err;
 back[b].backs <- back[b].backs + 1; //increase counter
 end if

(continues on the next page)

 Initial
Solution

Requested
Solution

Memorized
Rejected
Solution

Fail

N iterations

Fail

Fail

Memorized
Solution

22

 while b>0 and back[b].backs>max_backs do
 b <- b – 1; //maximum returns is reached
 s <- back[b].s; //return to previous memorized sol.
 err <- back[b].err;
 back[b].backs <- back[b].backs + 1; //increase counter
 end while
 end while
 return fail; //or best solution ever found
end EDMC-LSOB

Figure 2.20. Local search with optimization and backtrack approach

2.7.3. RMS Error Estimation
According to the tests made on the above proposed algorithm (see chapter 4

for details), most time of the program’s computation (at least 85%) was spend in
the analysis of the circuit. Therefore, in this section we propose a technique,
which will estimate the result of the suggested operation. The technique will use
the knowledge acquired from the previous application of the appropriate
operation. According to this estimation of improvement (or degradation) of the
current solution a probability of direct rejection of the proposed operation will be
computed.

procedure EDMC-LSOBE(max_iters, max_tries, max_backs)
 s <- initial circuit; //initial solution
 err <- eval(s); //RMS error of the initial solution
 b <- 0; back[b].s <- s; //memorize initial solution
 back[b].err <- err;
 back[b].backs <- 0; //number of returns to the solution
 stat <- {}; //statistics (empty or some default)
 while b>0 or backs[b]<max_backs do
 i <- 0; //iterations counter
 while i<max_iters and err>0 do
 op <- select_operation(); //operation selection
 prjc <- estimate_reject_prob(stat, op);//pr. rejection

if (random(0,1) > prjc) then //otherwise reject
 s’ <- apply_operation(s,op); //op. application
 err’ <- eval(s’); //new RMS error
 update_stat(stat,op,err’-err); //update statist.
 for t:=1 to max_tries do
 if acceptable(err,err’) then //accept change
 s <- s’; err <- err’;
 end if
 s’ <- alter_parameters(s,op); //modify sol.
 err’ <- eval(s’); //new RMS error
 update_stat(stat,op,err’-err);
 end for
 end if
 i <- i + 1; //increase iteration counter
 end while
 if (err=0) then return s; //return solution if found
 if (err<back[b].err*0.9) then //new choice point
 b <- b + 1;
 back[b].s <- s; //memorize solution
 back[b].err <- err;
 back[b].backs <- 0;
 end else //back to previous choice point

(continues on the next page)

23

 s <- back[b].s; //return to memorized solution
 err <- back[b].err;
 back[b].backs <- back[b].backs + 1; //increase counter
 end if
 while b>0 and back[b].backs>max_backs do
 b <- b – 1; //maximum returns is reached
 s <- back[b].s; //return to previous memorized sol.
 err <- back[b].err;
 back[b].backs <- back[b].backs + 1; //increase counter
 end while
 end while
 return fail; //or best solution ever found
end EDMC-LSOBE

Figure 2.21. Local search with optimization, backtrack and RMS estimation

Adopted algorithm is shown in Figure 2.21. There is a new entity introduced
in the algorithm: a statistics of “successfulness” of the applied operations so far.
This statistics is updated after each evaluation of a solution (circuit) and it takes
the difference of latest and previous evaluation and the applied operation (or some
classification of this operation) into account. According to this statistics, after an
operation is selected, the probability of direct rejection of the operation is
computed. If the probability is then met the operation is refused and the algorithm
continue with the another operation selection in the next iteration. Otherwise, the
algorithm continues as before – with applying the operation, evaluation of the new
circuit, computing whether the change is acceptable and so on. We assume that
the probability of rejection (because it is only some estimation) will never be
equal to one, e.g. we can limit it to 0.9.

Because we cannot compute the rejection probability only from the operation
(it is too inaccurate) or from the operation and from all the operands (there will be
very probably no exactly the same operation selected before) we propose a simple
classification of an operation and operands. The rejection probability is then
computed from the previous achieved differences of operations from the same
class. The idea is, to describe each operation with a short string (descriptor). This
also helps us to hash the operation classes in accordance with this string. This
descriptor is also proposed to be easily readable.

Circuit elements are classified by its name in net-list (e.g. RES, IND, MISTR,
ITEE). In the case that the element is assigned to a vertex, there is also a prefix
‘1’, ‘2’, ‘3’ or ‘4’ added according the number of edges connected to the vertex.
Otherwise, when the element is assigned to an edge, there is also a prefix ‘p’, ‘s’
or ‘c’ included in the classification, according to the edge’s location in the circuit:

s: If this edge is removed, the graph become disconnected (graph is
divided into the two parts with no edge between them) and both parts
contain at least one input/output port.

p: If this edge is removed, the graph become disconnected, but all
input/output ports are located in only one part. (See Figure 2.22.)

c: If this edge is removed, the graph remain connected. The edge creates
a circle in the graph.

24

2.22. Circuit element classification

The classification of an operation consists of above described classifications
of used elements (created, removed and modified) in the scheme expressing the
behaviour of the operation. If there is an edge or a vertex with no (zero) element
assigned, the edge or vertex is classified with the name “z” (zero element
assignment). In case of the operation O1 (which changes only a single parameter
of a selected element), the element classification is followed by the change
direction (+ for increasing the parameter, - for decreasing). This direction mark
can be repeated several times according to the extent of a change – one mark for a
difference less then 25% (of previous value), two marks for a difference less then
50%, three if less then 75% and four otherwise. Some examples are shown in
Figure 2.23.

O1: pRES R- -- one parameter is changed
 sMISTR L+++
 pMISTR W++
O2: sMISTR -> sRES -- one circuit element is chanded
 1SHORT -> 1OPEN
O3: 1SHORT 3ITEE -> z-cRES-4ICROS -- an edge is added
O4: 3ITEE-sRES-z -> z 1OPEN -- an edge is removed
O5: 4ICROS -> 3ITEE-cMISTR-3ITEE -- a node is split to two nodes
 4ICROS -> z-cMISTR-4ICROS
 3ITEE -> 3ITEE-sMISTR-z
O6: z -> 3ITEE-pRES-1SHORT -- a vertex w. an edge is added
 3ITEE -> 4ICROS-pMISTR-1OPEN
O7: sRES -> sRES-z-sCAP -- an edge is split to two edg.
O8: 4ICROS-pMISTR-1OPEN -> 3ITEE -- a vertex w. 1 edge is remov.
O9: pRES-z-pCAP -> pRES -- 2 edges are joined into 1
 sRES-z-sRES -> sRES -- a vertex w. 2 edges is rem.
O10: 3ITEE-sRES-z -> 3ITEE -- 2 connected vertices are
 3ITEE-sRES-3ITEE -> 4ICROSS -- joined into one

Figure 2.23. Examples of operation classes (descriptors)

So, the probability of rejection of a selected operation (with also selected
operands) is counted according to the successfulness (differences err’-err) of
the previous evaluated operations of the same class (operations with the same
descriptor). We can for example use the mean value of the previous computed
differences for estimation of the new difference. The probability of acceptance
can be counted from such estimated differences according to the formula used in
simulated annealing (Figure 1.8.) or stochastic hill climbing (Figure 1.10),
respective one minus probability of acceptance, which is computed there. We can
also use variances of these differences for estimation of the variance of the

sRES sCAP

 pRES

1SHORT

3ITEE

25

estimated difference. If we are unable to compute the rejection probability
because the set of the similar previous evaluated operations is not large enough,
we can set this probability to zero.

This approach can be also adopted to be used as guidance for the operation
selection.

2.8. Conclusion
We have proposed a promising algorithm based on single member evolution

and local search techniques which is able to solve many interesting assignments.
We also proposed several improvements to this algorithm.

In the following chapter, we will discuss some implementation aspects of this
algorithm and in the fourth chapter we will present some results achieved with
this algorithm.

26

3. Implementation Issues

In this chapter, we will discuss some implementation issues of the above
proposed and described algorithm. The algorithm is written in JAVA (JSDK
1.4.1). Complete documentation of all implemented classes is generated in HTML
format (via JavaDoc) and included on the CD which is a part of this thesis.

The whole implementation is divided into several packages (see Figure 3.1.).
We will discuss these packages in the following paragraphs.

Package Description
edmc.elements Circuit elements.
edmc.circuits Representation of a circuit (graph)
edmc.operations Operation over circuits
edmc.frequency Input (frequency) requirements
edmc.analysis Analysis – connection to program MIDE
edmc.design Circuit design – implementation of the algorithm
edmc.util Supporting classes

Figure 3.1. Packages

3.1. Circuit Elements
Each circuit element, which can be used in the design, has appropriate element

in the MIDE’s net-list and also appropriate class implemented. Such class has to
be extended from the abstract class edmc.elements.AbstractElement. It has to have
several methods implemented:

Method Description
constructor Creates an element, assign values to all parameters.
getNrGates() Returns number of ports of the element (e.g. 2 for

resistor)
getNrParams() Returns number of parameters of the element (e.g. 1 for

resistor – its resistance)
getParameterBounds(i) Returns i-th parameter‘s bounds
getName() Returns name of the element in MIDE
getParameter(i) Returns value of the i-th parameter
setParameter(i,val) Sets value of the i-th parameter
toString(int[] nodes) Return net-list representation of the element

(as a string)
getWidthParam(int i) For micro-stripes: returns the number of the parameter

which represents width for the i-th port
(or -1 otherwise, e.g. if there is no width)

Figure 3.2. Element’s API

27

Probably the most interesting part of the API is the method toString(int[]). It
has one parameter – the array of numbers – which are assigned to the appropriate
ports of the element. Result is a string, appropriate line of the net-list
representation. An example implementation of this method for resistor is shown in
Figure 3.3. (attribute iR represents the resistance parameter)

public String toString(int[] nodes) {
 return "RES "+nodes[0]+" "+nodes[1]+
 " R="+ToolBox.formatValue(iR)+"ohm";
}

Figure 3.3. An example implementation of toString(int[]) for resistor

There is also an API to propagation micro-stripe’s width between connected
elements, this can be made via method getWidthParam(int). But, because there is
a bug in the analysis tool, which is used in this work, micro-stripe connection
elements (e.g. MKR4, MTE4) cannot be used anyway (MIDE always fails with
some error).

All access to the element (e.g all changes of parameters) is made through this
API. So, a new element can be easily added to the system, just appropriate
element’s class has to be written. For more information, see appendix B,
section B.1.

3.2. Circuit Representation
A circuit is represented by a graph, implemented with classes in edmc.circuits

package, namely:

Class Description
Vertex Representation of a vertex.
Edge Representation of an edge
Graph Representation of graph, API for basic graph

operations (e.g. add or remove a vertex or an
edge) included

Circuit Representation of a circuit: graph plus circuit
operation (e.g. printing a net-list)

SerialNumberFactory Generator of unique numbers for vertices and
edges (e.g. to be used in net-list)

Figure 3.3. Package edmc.circuits

 Basically a graph is represented by vertices and edges (connections between
vertices). Besides the traditional graph-based functionality (e.g. to enumerate
connected vertices to a given vertex), there is also information and API for
assignment of a circuit element to a vertex or an edge and to maintenance unique
serial numbers for vertices (one per vertex, e.g. for comparison of two vertices)
and for edges (two per edge, one for each end – to be used in the net-list
representation). Class Graph provides basic graph functionality, for example for
counting and enumerating all edges and vertices, to add or remove an edge or a
vertex, to check whether a vertex or an edge can be removed (graph has to remain

28

connected) and last but not least for cloning a graph (used e.g. for memorizing
previous configuration). Class Circuit provides the circuit-based functionality, it
creates an initial circuit, it determines whether a vertex is an input/output port or
not, it collects information about available circuit elements, it prints net-list
representation and enumerates edge and vertex classification (e.g. sRES string).
There is also API for cloning circuits. The following Figure 3.4 shows an example
of creating a circuit. Resultant net-list representation is presented in Figure 3.5.

Circuit c = new Circuit(2,"test"); // 2 i/o ports, name is test

//drop initial edge between i/o ports
c.getGraph().dropEdge(c.getIO(0),c.getIO(1));

Vertex v1 = c.getGraph().createVertex(); // new vertices
Vertex v2 = c.getGraph().createVertex();
Vertex v3 = c.getGraph().createVertex();

Edge ei1 = c.getGraph().createEdge(c.getIO(0),v1); //new edges
Edge e1o = c.getGraph().createEdge(v1, c.getIO(1));
Edge e12 = c.getGraph().createEdge(v1,v2);
Edge e13 = c.getGraph().createEdge(v1,v3);

v1.setElement(new ICROS()); //assign elements to vertices
v2.setElement(new OPEN());
v3.setElement(new SHORT());

//assign element to edges – set appropriate parameters
ei1.setElement(new RES());ei1.getElement().setParameter(0,75.0);
e1o.setElement(new CAP());e1o.getElement().setParameter(0,1e-6);
e12.setElement(new IND());e12.getElement().setParameter(0,2.3e-9);
e13.setElement(new RES());e13.getElement().setParameter(0,1e3);

//print resultant net-list representation
c.printNetlist(System.out);

Figure 3.4. A circuit example

BLO test 1 4
RES 1 2 R=75 ohm
CAP 3 4 C=1 miF
ICROS 2 5 3 7
IND 5 6 L=2.3 nH
RES 7 8 R=1000 ohm
OPEN 6
SHORT 8
END

Figure 3.5. A circuit example – resultant net-list

3.3. Operations
Available circuit operation are located in the package edmc.operations, each

circuit operation has to be extended from abstract class edmc.operations.
CircuitOperation. There has to be following four methods implemented:

29

Method Description
boolean
process()

Selects operation‘s operands, applies the operation to the current
circuit and returns true. If there are no suitable operands (e.g. no
edge can be removed) it returns false (operation was not applied).

boolean
redo()

Local optimization: it changes parameters affected by previous call
of method process (or redo, when the changes are accepted). (redo
can be called several times)

good() Called when changes made by process or redo are accepted.
toString() Returns operation’s classification (descriptor)

Figure 3.6. Operation’s API

So, in each iteration step, the current circuit is memorized first. An operation
is selected and the appropriate method process is called then. If it returns false,
nothing was changed and the algorithm returns to the selection of an operation.
Otherwise, the changed circuit is evaluated and if the local optimization is used
(as described in section 2.7.1) the method redo is called several times (to optimize
parameters changed by method process). If the changed circuit is accepted,
method good is called (can be called after process method and each redo). This
affects the mean values of the distribution used the selection of parameters’ values
(previous accepted values are used). Last accepted circuit is used for the next
iteration.

3.4. Frequency Requirements
Classes for representation of the input requirements (on the given frequncy)

are located in the package edmc.frequency. These classes also provide
computation of the resultant RMS error from the values computed in analysis.
There are classes:

Class Description
FrequencyElement Interface for frequency requirements.
Frequency Requirements on a single frequency.
FrequencyStep Requirements on a set of frequencies given by minimal,

maximal frequency and a difference between two
frequencies from this set.

FrequencyLog Requirements on a logarithmically spread set of
frequencies – given by minimal, maximal and the number
of frequencies.

FrequencySet Set of input requirements.
Figure 3.7. Package edmc.requency

Each requirement (described by class Frequency, FrequencyStep or
FrequencyLog) is an implementation of the interface FrequencyElement and
provides API for enumeration its frequencies (class Frequency presents a set of
one requirement) and a requirement on these frequencies. All these requirements
are placed together in the class FrequencySet which represents all the input
requirements. This class also provides API for enumeration of all used frequencies

30

(with no duplicities) needed by the analysis, conversion of requirements from
input strings and for computation of the RMS error based on the requirements and
the results from the analysis.

A requirement consists from a parameter (e.g. transmission of a circuit), an
operation (e.g. less then), a value (e.g. -25 dB) and a weight of the requirement
(default weight is 1.0). A parameter consists from a type and from the row and
column of the S-matrix (denoted by type, character ‘S’, row and column - e.g.
transmission from first to second gate of a circuit expressed in dB is denoted by
DS21). Available types are denoted in Figure 3.8 and available operations are
denoted in Figure 3.9. An example of requirements is shown in Figure 3.10.

Type Description
A Magnitude
F Phase
D Magnitude in dB
R Real part
I Imaginary part
G Operational transmission (S21*S21)
K Rollet stability factor

Figure 3.8. Types of requirement parameters

Operation Description
? No requirement
= Equal
> Greater than
>= Greater or equal
< Less than
<= Less or equal

Figure 3.9. Requirement operations

OPT
 1.0 GHz DS21 < -25
 1.2 GHz DS21 < -25 w 5
 STEP 100 MHz 250 MHz 10 MHz AS21 > 0.9
 STEP 100 MHz 250 MHz 10 MHz DS11 < -33 w 2.3
 LOG 1 GHz 29 GHz 12 RS12 > 0
END

Figure 3.10. Requirements example

So, a single requirement is described as a line in the OPT block, it consists of
frequency specification: single frequency, linearly distributed set of frequencies
described by STEP and their minimum, maximum and distance between them
(e.g. 100, 110, 120 MHz in the above example) or logarithmically distributed set
of frequencies described by LOG and their minimum, maximum and their amount
(plus one – according to the specification in MIDE) (e.g. thirteen frequencies 1,
1.324, … 29 GHz in the above example).

31

3.5. Analysis
Classes providing connection to external analysis tool (program MIDE) are

located in the package edmc.analysis. There are two classes, first (called
MideAnalysis) calls the MIDE analysis for the given circuit and the second (called
SParam) is used for returning resultant S-parameters on the given frequency. It
also provides conversion of S-parameters to other parameters types described in
Figure 3.8.

Because, the program MIDE is used as an external program, the parameters
are handed over as a single file, with two blocks – demanded frequencies and a
circuit represented as net-list. An example of such file is shown in Figure 3.11.

FREQ
STEP 500 MHz 900 MHz 100 MHz
STEP 995 MHz 1005 MHz 1000 kHz
STEP 1100 MHz 2400 MHz 100 MHz
STEP 2495 MHz 2505 MHz 1000 kHz
STEP 2600 MHz 3000 MHz 100 MHz
END
BLO edmc 1 3 5
IND 1 2 L=0.00175 pH
MCPL 3 500 4 501 W=1.71058 mm L=28.78127 mm S=110 mim
SHORT 500
SHORT 501
MCPL 5 502 6 503 W=540 mim L=81.99079 mm S=2.16089 mm
SHORT 502
OPEN 503
ICROS 6 16 7 22
CAP 15 16 C=3.3766 pF
MISTR 7 8 W=1.34809 mm L=110.52228 mm
IND 21 22 L=15.24331 nH
MCPL 8 9 11 504 W=540 mim L=2.10562 mm S=298.95314 mim
OPEN 504
MGAP 9 10 W=770.18605 mim S=62.03038 mim
IND 11 12 L=25.90359 nH
ITEE 12 39 13
RES 39 40 R=1852.58228 ohm
CAP 13 14 C=2.25181 pF
ICROS 18 27 19 31
MISTR 14 18 W=2 mm L=51.83293 mm
CAP 27 28 C=0.52194 pF
MISTR 19 10 W=540 mim L=15.31472 mm
CAP 31 32 C=3.98469 pF
ITEE 15 34 32
MISTR 33 34 W=540 mim L=19.00889 mm
ICROS 4 23 21 30
MCPL 23 505 24 506 W=2 mm L=55.14562 mm S=500 mm
SHORT 505
OPEN 506
MGAP 29 30 W=2 mm S=665.71218 mim
CAP 26 29 C=8.03912E-16 F
MCPL 24 25 28 507 W=875.24938 mim L=2.16024 mm S=420.94364 mm
SHORT 507
IND 25 26 L=41.92279 nH
ITEE 2 35 33
MISTR 35 36 W=540 mim L=5.11045 mm
OPEN 36
OPEN 40
END

Figure 3.11. A file for MIDE analysis

32

Result from the MIDE program is another file, with a table in CSV format
(coma separated text file, e.g. readable by Microsoft Excel) with the computer S-
parameters on the given frequencies. Example is shown in Figure 3.12. If the
analysis fails (from any reason), the altered solution is automatically rejected.

Freq S11[re] S11[im] S12[re] S12[im] S13[re] S13[im] ...
1 -1,55E-01 3,04E-01 -4,75E-02 2,69E-02 -1,20E-01 4,71E-02
2 -9,56E-01 1,49E-01 1,88E-02 2,24E-02 1,87E-02 7,86E-03
3 -5,56E-01 7,97E-01 3,71E-03 5,75E-03 3,25E-03 1,05E-03
4 8,62E-01 1,95E-01 -1,75E-04 -6,25E-03 -1,64E-03 -1,76E-03
5 -2,36E-01 8,49E-01 -1,28E-01 1,69E-01 4,25E-03 6,68E-02
6 1,78E-01 1,47E-01 6,04E-01 1,78E-01 1,38E-01 -2,73E-02

... ...
Figure 3.12. Resultant S-parameters from MIDE

3.6. Design
Design is provided by classes located in package edmc.design. Beside the

main class Designer which does the search, there are also plenty of classes to
provide selection of vertices, edges, elements and operations. In the current
implementation, most (all except the selection of an operator) them selects one of
the available element randomly with the uniform probability. But there is a nice
API for change these selections. Operation is also selected randomly, but
individual operations can have different probability, according to their weights
(Figure 3.13), where O is the set of available operations. These weights can be
also changed during the search (e.g. increased by one when the operation is
accepted).

∑
∈

=

Oo
o

op
op w

wP

Figure 3.13. Selection probability of a operation

The design algorithm (class Designer) is implemented according to the
chapter two, with all improvements proposed there.

In this package (edmc.design), there is also a class (called InputFile) for
reading input file (with requirements and designer settings) and a class for
providing the rejection probability (called Prediction) according to the section
2.7.3.

3.7. Conclusion
In this chapter, we have described some interesting issues of the

implementation of the above presented algorithm. The main advantage of this
implementation is the great possibility to extend the implementation for new
circuit elements, frequency requirements, circuit operations, selection heuristics
and also extension of the algorithm. Different tools for analysis can also be
added.

33

This chapter is also mentioned as the starting point before reading javadoc
documentation included on the CD, which provides the complete description of
each implemented class.

The user documentation, with describes usage of the resultant program,
structure of input files etc. is placed in the appendix A of this thesis. Some
examples of how to extend the implementation are located in the appendix B.

34

4. Practical Results

In this chapter, we present some practical results of the algorithm. Our main
goal here is to prove the applicability of single member population evolutionary
algorithms in design of microwave circuits. All measurements were made on
Pentium III 1GHz, 512 MB RAM, with java JSDK 1.4.1.

4.1. A Band Pass Filter
First example is a band pass filter with the following design goals:

• Between 1 GHz and 3 GHz transmission below -25 dB
• Passband transmission above -1.5 dB between 5.5 GHz and 6.5 GHz
• Stopband attenuation between 9.225 GHz and 12 GHz below -35 dB

The appropriate design input file, which was used, is presented in Figure 4.1.

*EDMC Input File – band pass filter
*Designer configuration
CONFIGURATION
 NR_GATES 2
 FREQ_MIN 1e9
 FREQ_MAX 12e9
 FREQ_STEP 50e6
END
*Available circuit elements for edges
LINKS
 MISTR
 MGAP
END
*Available circuit elements for vertices
NODES
 ICROS
 ITEE
 SHORT
 OPEN
 MCPL
END
*Available operations – names of appropriate classes + weight
OPERATIONS
 LinkParamModifier 50
 NodeParamModifier 50
 LinkElementChanger 20
 NodeElementChanger 10
 SplitLink 6
 SplitLinkT 4
 SplitNode 6
 AddLink 4
 RemoveLink 5
 JoinNodes 5
 RemoveNode 10
 RemoveNode2 7
END

(continues on the next page)

35

*Input requirements
OPT
 STEP 1 GHz 3 GHz 250 MHz DS21 < -25.0
 STEP 5.5 GHz 6.5 GHz 50 MHz DS21 > -1.5 w 10
 STEP 9.225 GHz 12 GHz 250 MHz DS21 < -35.0
END

Figure 4.1. Band pass filter input file

In the following subsections, we will described results obtained from the
implemented program, for two different executions.

4.1.1. First Execution
A complete solution (with RMS error equal to zero) was found after 4058

seconds. Program MIDE was called 48513 times and its execution takes 88% of
all time spent. Resultant characteristics are given on the following graph (Figure.
4.2) and the resultant circuit is presented in Figure 4.3. (in the net-list language).

Figure 4.2. Characteristics of the resultant circuit

BLO edmc 7 32
MISTR 7 8 W=540 mim L=8.71104 mm
MISTR 31 32 W=540 mim L=8.02935 mm
ICROS 5 13 2 3
MCPL 5 500 6 501 W=1.95273 mm L=2.50405 mm S=652.99094 mim
SHORT 500
OPEN 501
MCPL 13 502 14 503 W=1.42652 mm L=1.09886 mm S=500 mm
SHORT 502
SHORT 503
MISTR 1 2 W=540 mim L=10.68541 mm
MISTR 3 4 W=540 mim L=810.41299 mim
ITEE 6 17 9
MCPL 17 504 18 505 W=540 mim L=1.77733 mm S=110 mim
OPEN 504
OPEN 505
MCPL 9 506 10 507 W=2 mm L=1.80125 mm S=8.36805 mm
SHORT 506

(continues on the next page)

-70

-60

-50

-40

-30

-20

-10

0
1,00 2,00 3,00 4,00 5,00 6,00 7,00 8,00 9,00 10,00 11,00 12,00

S11[dB]
S21[dB]
S22[dB]

Frequency [GHz]

dB

36

SHORT 507
ITEE 10 49 24
MCPL 49 508 50 509 W=2 mm L=1.06373 mm S=121.10919 mm
OPEN 508
OPEN 509
MGAP 23 24 W=2 mm S=182.2038 mim
ICROS 8 18 1 16
MCPL 15 510 16 511 W=2 mm L=3.02606 mm S=110 mim
SHORT 510
SHORT 511
ICROS 14 41 15 33
MISTR 41 29 W=540 mim L=2.53002 mm
MCPL 33 512 34 513 W=2 mm L=2.09088 mm S=670.71981 mim
OPEN 512
OPEN 513
ICROS 4 31 23 26
MCPL 25 514 26 515 W=919.93726 mim L=6.49818 mm S=5.8395 mm
SHORT 514
OPEN 515
MCPL 34 516 35 517 W=2 mm L=6.97535 mm S=52.7003 mm
OPEN 516
OPEN 517
MCPL 35 518 11 519 W=665.94771 mim L=11.08678 mm S=1.85916 mm
OPEN 518
SHORT 519
MGAP 29 30 W=2 mm S=526.22862 mim
SHORT 12
MGAP 11 12 W=540 mim S=10.1 mim
SHORT 50
MGAP 30 25 W=2 mm S=526.22862 mim
END

Figure 4.3. Resultant circuit

4.1.2. Second Execution

Figure 4.5. Characteristics of the resultant circuit – second execution

In the second execution, a complete solution (with RMS error equal to zero)
was found after 5110 seconds. Program MIDE was called 88690 times and its

-80

-70

-60

-50

-40

-30

-20

-10

0
1,00 2,00 3,00 4,00 5,00 6,00 7,00 8,00 9,00 10,00 11,00 12,00

Frequency

dB

S11[dB]
S21[dB]
S22[dB]

37

execution takes 90% of all time spent. Resultant characteristics are given on the
following graph (Figure. 4.5) and the resultant circuit is presented in Figure 4.6.

BLO edmc 1 6
MISTR 1 2 W=1.56204 mm L=5.93313 mm
MISTR 5 6 W=2 mm L=3.87198 mm
ITEE 3 17 10
MCPL 3 500 4 501 W=759.77503 mim L=6.56124 mm S=126.19163 mim
OPEN 500
OPEN 501
MISTR 17 18 W=552.14427 mim L=924.06968 mim
MISTR 9 10 W=540 mim L=8.65577 mm
ICROS 4 13 7 21
MCPL 13 502 14 503 W=540 mim L=4.1677 mm S=110 mim
OPEN 502
OPEN 503
MISTR 7 8 W=2 mm L=2.16245 mm
MISTR 21 22 W=540 mim L=3.69405 mm
OPEN 8
ITEE 9 2 11
MISTR 11 12 W=1.67296 mm L=23.11804 mm
SHORT 12
ITEE 14 15 5
MISTR 15 16 W=822.68662 mim L=2 mm
SHORT 16
OPEN 18
MISTR 22 24 W=2 mm L=2.10017 mm
OPEN 24
END

Figure 4.6. Resultant circuit – second execution

4.2. An Amplifier
Second example is an amplifier with the following requirements:

• Transmission at 1.7 GHz is above 17 dB
• Reflection both on input and output gate is less then -40 dB at

frequency 1.7 GHz
• Use of a MGF1801 transistor

The appropriate design input file, which was used, is presented in Figure 4.7.

*EDMC Input File - amplifier
*Designer configuration
CONFIGURATION
 NR_GATES 2
 FREQ_MIN 1.5e9
 FREQ_MAX 1.9e9
 FREQ_STEP 5e6
END
*Available circuit elements for edges
LINKS
 MISTR
 RES
 2PORT data\\Mgf1801
END

(continues on the next page)

38

*Available circuit elements for vertices
NODES
 ICROS
 ITEE
 SHORT
END
*Available circuit operations – names of appropriate classes
OPERATIONS
 LinkParamModifier 50
 LinkElementChanger 20
 SplitLink 6
 SplitLinkT 4
 SplitNode 6
 AddLink 4
 AddNode 4
 RemoveLink 10
 JoinNodes 10
 RemoveNode 20
 RemoveNode2 15
END
*Input requirements
OPT
 STEP 1.7 GHz 1.7 GHz 1 MHz DS21 > 17.0
 STEP 1.7 GHz 1.7 GHz 1 MHz AS11 < 0.01
 STEP 1.7 GHz 1.7 GHz 1 MHz AS22 < 0.01
END

Figure 4.7. Amplifier input file

4.2.1. First Execution
A complete solution (with RMS error equal to zero) was found after 163

seconds. Program MIDE was called 5396 times and its execution takes 84% of all
time spent. Transistor MGF1801 was used thee times. Resultant characteristics are
given on the following graph (Figure. 4.8) and the resultant circuit is presented in
Figure 4.9.

Figure 4.8. Characteristics of the resultant circuit

-60

-50

-40

-30

-20

-10

0

10

20

30
1,50 1,55 1,60 1,65 1,70 1,75 1,80 1,85 1,90

Frequency [GHz]

dB

S11[dB]

S12[dB]

S21[dB]

S22[dB]

39

BLO edmc 3 6
MISTR 3 4 W=540 mim L=45.64546 mm
RES 5 6 R=9.01785 ohm
ICROS 1 7 12 25
2PORT 1 2 data\\Mgf1801.spr
RES 7 8 R=521.31844 ohm
2PORT 11 12 data\\Mgf1801.spr
MISTR 25 26 W=1.52669 mm L=15.28378 mm
SHORT 26
ITEE 4 8 21
RES 21 22 R=12.13988 ohm
ITEE 2 15 5
MISTR 15 16 W=1.26851 mm L=31.1886 mm
RES 17 9 R=218.32565 ohm
2PORT 9 10 data\\Mgf1801.spr
ICROS 17 16 19 23
RES 19 20 R=83.7481 ohm
MISTR 23 24 W=2 mm L=14.99323 mm
SHORT 20
ITEE 22 13 11
RES 13 14 R=1002.3585 ohm
SHORT 24
SHORT 10
SHORT 14
END

Figure 4.9. Resultant circuit

4.2.2. Second Execution
A complete solution (with RMS error equal to zero) was found after 150

seconds. Program MIDE was called 5306 times and its execution takes 85% of all
time spent. Transistor MGF1801 was used two times. Resultant characteristics are
given on the following graph (Figure. 4.10) and the resultant circuit is presented
in Figure 4.11.

Figure 4.10. Characteristics of the resultant circuit – second execution

-70

-60

-50

-40

-30

-20

-10

0

10

20

30
1,50 1,55 1,60 1,65 1,70 1,75 1,80 1,85 1,90

Frequency [GHz]

dB

S11[dB]
S12[dB]
S21[dB]
S22[dB]

40

BLO edmc 5 18
MISTR 5 6 W=2 mm L=156.08503 mm
MISTR 17 18 W=540 mim L=1.09148 mm
2PORT 8 14 data\\Mgf1801.spr
2PORT 10 3 data\\Mgf1801.spr
ITEE 6 9 11
RES 9 10 R=4.37169 ohm
RES 11 12 R=44.55863 ohm
SHORT 12
MISTR 3 4 W=2 mm L=11.66162 mm
MISTR 4 8 W=540 mim L=17.78792 mm
ITEE 14 1 17
RES 1 2 R=100.19728 ohm
ITEE 2 25 15
RES 25 26 R=34.57923 kohm
MISTR 15 16 W=540 mim L=8.17067 mm
MISTR 16 20 W=2 mm L=1.69509 mm
SHORT 20
SHORT 26
END

Figure 4.11. Resultant circuit – second execution

4.2.3. Third Execution
In the third execution, we want to present an interesting feature of the

implemented algorithm. If we enlarge the set of available circuit elements, the
resultant circuit becomes much larger and the program will spend more time in
searching for it. For the third execution, we added elements MGAP, IND and
CAP to available edge (link) elements and elements OPEN and MCPL to
available vertex (node) elements.

A complete solution (with RMS error equal to zero) was found after 1220
seconds. Program MIDE was called 28794 times and its execution takes 70% of
all time spent. Transistor MGF1801 was used six times. Resultant characteristics
are given on the following graph (Figure. 4.12) and the resultant circuit is
presented in Figure 4.13.

Figure 4.12. Characteristics of the resultant circuit – third execution

-80

-60

-40

-20

0

20

40

60
1,50 1,55 1,60 1,65 1,70 1,75 1,80 1,85 1,90

dB

S11[dB]
S12[dB]
S21[dB]
S22[dB]

Frequency [GHz]

41

BLO edmc 1 4
IND 1 2 L=6.59921 nH
2PORT 3 4 data\\Mgf1801.spr
ICROS 8 11 9 45
2PORT 7 8 data\\Mgf1801.spr
IND 11 12 L=31.97994 nH
MISTR 9 10 W=2 mm L=186.23889 mm
MGAP 45 46 W=2 mm S=28.35029 mim
2PORT 13 7 data\\Mgf1801.spr
ICROS 2 22 13 15
RES 15 16 R=161.14212 ohm
ITEE 3 37 20
IND 37 38 L=142.51702 nH
IND 19 20 L=16.47499 nH
MCPL 17 6 25 500 W=540 mim L=18.35206 mm S=500 mm
SHORT 500
MISTR 17 18 W=2 mm L=150.3482 mm
MGAP 5 6 W=540 mim S=10.1 mim
MGAP 25 26 W=1.8122 mm S=10.1 mim
ITEE 18 55 32
MGAP 55 56 W=2 mm S=123.98318 mim
MISTR 31 32 W=989.83331 mim L=2.8251 mm
ITEE 10 53 19
CAP 53 54 C=3.09664 nF
ITEE 21 49 24
IND 21 22 L=63.08765 nH
CAP 49 50 C=1.24495E-18 F
2PORT 23 24 data\\Mgf1801.spr
ITEE 26 39 23
CAP 39 40 C=1.00000E-22 F
ICROS 12 27 5 59
CAP 59 60 C=0.01562 pF
MCPL 16 35 31 501 W=866.32719 mim L=2.23132 mm S=16.50215 mm
OPEN 501
MCPL 38 33 58 502 W=540 mim L=1 mm S=26.92026 mm
OPEN 502
MGAP 33 34 W=2 mm S=182.07513 mim
2PORT 48 58 data\\Mgf1801.spr
ITEE 29 54 43
IND 29 30 L=526.81286 nH
RES 27 28 R=5941.60814 ohm
MGAP 35 28 W=540 mim S=28.98025 mim
SHORT 42
CAP 34 42 C=0.00423 pF
SHORT 44
IND 43 44 L=469.52831 nH
SHORT 52
IND 51 52 L=7.17647 miH
SHORT 30
MCPL 46 47 51 503 W=540 mim L=22.61353 mm S=500 mm
OPEN 503
2PORT 47 48 data\\Mgf1801.spr
SHORT 50
SHORT 40
SHORT 60
SHORT 56
END

Figure 4.13. Resultant circuit – third execution

42

4.3. A Frequency Splitter
Third example is a frequency splitter circuit with 3 ports with the following

requirements:

• Transmission from first port to second port:
o Stopband attenuation below 700 MHz transmission below -25 dB
o Passband transmission above -2 dB between 990MHz and 1010 MHz
o Stopband attenuation after 1.3 GHz below -25 dB

• Transmission from first port to third port:
o Stopband attenuation below 2.2 GHz transmission below -25 dB
o Passband transmission above -2 dB between 2.49 GHz and 2.51 GHz
o Stopband attenuation after 2.8 GHz below -25 dB

The appropriate design input file, which was used, is presented in Figure 4.14.

*EDMC Input File – frequency splitter
*Designer configuration
CONFIGURATION
 NR_GATES 3
END
*Available circuit elements for edges
LINKS
 MISTR
 RES
 MCPL_OPEN_OPEN
 MCPL_SHORT_SHORT
 MCPL_OPEN_SHORT
 MCPL_SHORT_OPEN
END
*Available circuit elements for vertices
NODES
 ICROS
 ITEE
 SHORT
 OPEN
END
*Available circuit operations – names of appropriate classes
OPERATIONS
 LinkParamModifier 50
 NodeParamModifier 50
 LinkElementChanger 20
 NodeElementChanger 10
 SplitLink 6
 SplitLinkT 4
 SplitNode 6
 AddLink 4
 RemoveLink 5
 JoinNodes 5
 RemoveNode 10
 RemoveNode2 7
END

(continues on the next page)

43

*Input requirements
OPT
 STEP 0.5 GHz 0.7 GHz 100 MHz DS21 < -25.0
 STEP 0.990 GHz 1.010 GHz 1 MHz DS21 > -2.0 w 3
 STEP 1.3 GHz 3 GHz 100 MHz DS21 < -25.0
 STEP 0.5 GHZ 2.2 GHz 100 MHz DS31 < -25.0
 STEP 2.490 GHz 2.510 GHz 1 MHz DS31 > -2.0 w 3
 STEP 2.8 GHz 3 GHz 100 MHz DS31 < -25.0
END

Figure 4.14. Amplifier input file

A complete solution (with RMS error equal to zero) was found after 1049
seconds. Program MIDE was called 7276 times and its execution takes 89% of all
time spent. Resultant characteristics are given on the following graph (Figure.
4.15) and the resultant circuit is presented in Figure 4.16. (in the net-list
language). Errors in stopbands (e.g. on frequency 1.65 GHz) are caused by
frequency step 100 MHz used in the requirements (e.g. it forces transmission to be
less then -25 dB only on frequencies 1.6GHz and 1.7GHz).

Figure 4.15. Characteristics of the resultant circuit – frequency splitter

BLO edmc 1 3 5
MISTR 1 2 W=569.51105 mim L=19.23556 mm
MISTR 3 4 W=540 mim L=3.43969 mm
MISTR 5 6 W=2 mm L=11.80003 mm
ICROS 7 22 16 28
MISTR 7 8 W=2 mm L=38.8069 mm
MISTR 21 22 W=582.2626 mim L=59.00661 mm
MISTR 15 16 W=540 mim L=25.19255 mm
MISTR 27 28 W=2 mm L=52.95338 mm
ICROS 8 39 11 51
RES 39 40 R=14.98205 ohm
MISTR 11 12 W=1.15274 mm L=8.89615 mm
RES 51 52 R=5816.53144 ohm
ICROS 2 25 13 9
MISTR 25 26 W=2 mm L=78.09236 mm

(continues on the next page)

-80

-70

-60

-50

-40

-30

-20

-10

0
0,50 0,75 1,00 1,25 1,50 1,75 2,00 2,25 2,50 2,75 3,00

Frequency [GHz]

dB

S21[dB]
S31[dB]

44

MCPL 13 500 14 501 W=2 mm L=62.26594 mm S=18.7913 mm
SHORT 500
OPEN 501
MISTR 9 10 W=725.85307 mim L=16.4946 mm
ITEE 12 49 19
RES 49 50 R=11.72978 kohm
RES 19 20 R=10.32206 kohm
SHORT 14
ITEE 6 17 15
MCPL 17 502 18 503 W=1.05499 mm L=27.1887 mm S=26.76051 mm
OPEN 502
OPEN 503
MCPL 18 504 34 505 W=540 mim L=1 mm S=323.87823 mim
SHORT 504
SHORT 505
ICROS 4 23 21 43
MCPL 23 506 24 507 W=1.98613 mm L=10.15956 mm S=3.19237 mm
SHORT 506
OPEN 507
MCPL 43 508 44 509 W=540 mim L=29.18606 mm S=1.01856 mm
SHORT 508
SHORT 509
ITEE 24 31 41
MCPL 31 510 32 511 W=540 mim L=9.21812 mm S=641.62831 mim
SHORT 510
OPEN 511
MCPL 41 512 40 513 W=540 mim L=1 mm S=2.05224 mm
OPEN 512
OPEN 513
SHORT 26
ICROS 10 29 27 36
MCPL 29 514 30 515 W=2 mm L=30.23749 mm S=901.65432 mim
OPEN 514
SHORT 515
MISTR 35 36 W=1.64023 mm L=35.27847 mm
MCPL 30 516 38 517 W=540 mim L=5.13426 mm S=1.6458 mm
SHORT 516
OPEN 517
ITEE 35 48 45
MCPL 34 518 48 519 W=540 mim L=1 mm S=323.87823 mim
SHORT 518
SHORT 519
MCPL 45 520 46 521 W=2 mm L=28.14705 mm S=2.81992 mm
OPEN 520
SHORT 521
ITEE 38 54 55
MISTR 52 54 W=540 mim L=21.8578 mm
OPEN 20
OPEN 46
MCPL 55 522 32 523 W=540 mim L=18.70358 mm S=112.07285 mim
SHORT 522
OPEN 523
SHORT 44
OPEN 50
END

Figure 4.16. Resultant circuit – frequency splitter

4.4. Conclusion
As it is shown in this chapter, the implemented evolutionary algorithm is able

to solve many interesting assignments. On the above presented problems, the

45

program has always been able to find a complete solution, with RMS error equal
to zero, if there is enough time for execution. But, the results significantly vary
one execution from another. The dependency of the results and needed time for
execution on the input parameters, especially on the set of available circuit
elements, is also visible.

For the proposed improvements, the first two of them (local optimization and
backtrack) seem to be very helpful in the design. Without these improvements, the
algorithm was much less stable: sometimes it was unable to find a solution even in
enormous amount of time. The third improvement seems to be useless – there is
no visible improvement of the speed, stability or quality of solutions when this
improvement is used. The results presented in this chapter were made with the all
three improvements enabled.

46

5. Conclusion

We have presented a promising evolutionary algorithm for microwave circuit
design. The main advantage of this algorithm is to point out a possibility of use of
evolutionary algorithms in the area of circuit design. The implemented program
can give solutions on rather complicated requirements without any knowledge of
traditional design strategies and algorithms.

In the first chapter, the general principles and methods of evolutionary
algorithms were described. In the second chapter the algorithm for the design of
microwave circuits was proposed and the implementation of the proposed
algorithm in Java was outlined in the third chapter. The fourth chapter contains
some practical results achieved with the implemented algorithm on three different
assignments.

47

6. References

[1] T. Bäck, F. Hoffmeister, H. P. Schwefel. A survey of evolution strategies.
Proc. of the Fourth International Conference on Genetic Algorithms and
their Applications, San Diego, California, USA, 1991.

[2] E. K. Burke, A. J. Smith. A memetic algorithm for the maintenance
scheduling problem. In Proceedings of the International Conference
on Neural Information Processing and Intelligent Information Systems,
volume 1, pages 469--472. Springer, 1997

[3] P. Galinier and J. K. Hao. Tabu search for maximal constraint satisfaction
problems. In Proceedings of CP'97, G. Smolka ed., LNCS 1330, pp. 196-
208, Schloss Hagenberg, Austria, Springer, 1997.

[4] W. D. Harvey. Nonsystematic Backtracking Search. PhD thesis, Stanford
University, 1995

[5] S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi. Optimization by Simulated
Annealing. Science, Number 4598, pp. 671-680, 1983

[6] J.-M. Labat, L. Mynard, Oscillation, Heuristic Ordering and Pruning
in Neighborhood Search. In Proceedings of CP'97, G. Smolka ed., LNCS
1330, pp. 506-518, Schloss Hagenberg, Austria, Springer, 1997.

[7] K. Marriot, P. J. Stuckey. Programming with Constraints: An Introduction.
The MIT Press, 1998

[8] Z. Michalewicz, D. B. Fogel. How to Solve It: Modern Heuristics. Springer,
2000

[9] Z. Škvor, K. Hoffmann, J. Tomandl, Z.Medek. Computer aided design of
radiofrequency and microwave circuits. Radioengineering, 2 (1993) 1,
pp. 2-5

[10] D. Whitley. A Genetic Algorithm Tutorial. Technical report, Computer
Science Department, Colorado State University, 1997.

[11] A. H. Wright. Genetic algorithms for real parameter optimization.
Foundations of Genetic Algorithms, pages 205--218. Morgan Kaufmann
Publishers, San Mateo, CA, 1991.

[12] The Java Tutorial, http://java.sun.com/docs/books/tutorial/index.html
[13] JSDK (Java Software Development Kit) 1.4.1 Documentation,

http://java.sun.com/j2se/1.4.1/docs/api/index.html

Main part of this diploma thesis, describing the evolutionary algorithm and
some of its practical results, was submitted to the COMITE’03 conference. Initial
work, the evolutionary algorithm for design sequence coaxial filters was presented
at CAD&CAE workshop.

[14] T. Müller, Z. Škvor. Evolutionary Design of Microwave Circuits. Submitted
to COMITE’03 conference, Pardubice, September 2003

[15] T. Müller. Evoluční návrh filtru. CAD&CAE workshop, Katedra
elektromagnetického pole, FEL ČVUT, Praha, September 2002

A - 1

Appendix A User Documentation

A.1. Prerequisites
Java Runtime Environment (JRE) or Java Software Development Kit (JSDK)

version at least 1.4.0 has to be installed on the target machine. An installation kit
of JRE 1.4.1 is included on the CD-ROM, file extra\java\j2re-1_4_1_02-
windows-i586-i.exe.

A.2. Installation
Because the program needs to write some temporrary files during the design

of microwave circuits, it cannot be executed directly from the CD-ROM. The
program is located in the folder edmc on the CD-ROM. This folder should be
copied from CD-ROM to hard drive before execution (e.g. c:\edmc).

Before the first execition, file edmc.bat has to be adopted according to the JRE
or JSDK installation. Environment variable JAVA_HOME has to be set. For
example, if you have Java installed in folder c:\j2sdk1.4.1, change fourth line of
edmc.bat to:

SET JAVA_HOME=c:\j2sdk1.4.1

Figure A.1. Set JAVA_HOME environment variable

A.3. Usage
When the program is installed, it can be executed via edmc.bat. It has three

parameters:

edmc.bat input.edmc output.cad output.csv

Figure A.2. Program usage

First parameter denotes the input file (with the configuration and
requirements, see section A4). Output circuit is stored in the file denoted by the
second parameter. Characteristics of the output circuit are stored in the file
denoted by the third parameter. During the search, the best ever found solution is
stored in these output files.

A.4. Input File
Input file is a text file. It contains several sections started by section name and

finished by keyword END. Empty lines or lines starting with star character are
ignored.

A.4.1. Section CONFIGURATION
Initial program configuration is stored in this section. It has simple structure,

each line represents one parameter. It consists from the parameter name followed

A - 2

by space and the value. A simple example with only a number of input/output
ports (equal to two) is shown in Figure A.3. Redundant spaces are ignored.

CONFIGURATION
 NR_GATES 2
END

Figure A.3. Section CONFIGURATION

The following table (Figure A.4) describes all available parameters, which can
be set and their default values.

Parameter Default Value Description
NR_GATES 2 Number of input/output ports

minimum is 2, maximum is 4
FREQ_MIN Minimal used

frequency
Minimum frequency for the output
characteristics

FREQ_MAX Maximal used
frequency

Maximum frequency for the output
characteristics

FREQ_STEP 0.01e9 Frequency step for the output
characteristics

ACCEPT_TYPE 3 Type of acceptance criterion
0 .. only better solution is accepted
1 .. random walk
2 .. simulated annealing
3 .. stochastic hill climbing

ACCEPT_PROB 0.005 Random walk: probability of acceptance
a random step

ACCEPT_TMAX 1.0 Simulate annealing or stoch. hill climb.:
Initial (maximal) temperature

ACCEPT_TMIN 1e-4 Simulate annealing or stoch. hill climb.:
Minimum temperature

ACCEPT_ITERS 100 Simulate annealing or stoch. hill climb.:
First number of iterations:

() iNTTTT iters ⋅−−=)(minmaxmax ,
otherwise minTT =

BT_MAX_DEPTH 1000 Backtrack improvement:
Maximal number of choice points

BT_ACCEPT 0.01 Backtrack improvement:
Required solution improvement (in
percentage) to be accepted (percentage).

BT_MAX_ITERS 30 Backtrack improvement:
Number of iteration between choice
points

(continues on the next page)

A - 3

BT_MAX_CHOICES 10 Backtrack improvement:
Maximum number of choices (back
jumps) for a single choice point

MAX_RESTARTS 7 Maximum number of restarts (when no
solution is found) – restarted search
starts from best solution ever found

OPT_MAX_TRY 10 Local parameter optimization:
Number of tries

OPT_ACCEPT 0.001 Local parameter optimization:
Required improvement to increase
number of tries

OPT_ADD_TRY 25 Local parameter optimization:
When a solution is accepted and better
enough during local optimization –
number of additional tries

MAX_RMS 2.0 Current solution limitation:
If the RMS error of the new solution is
greater than MAX_RMS multiplied by
RMS error of the best solution ever
found – it is not accepted

BT_MAX_RMS 1.2 Backtrack improvement:
Limitation for new choice points – if a
solution is much worse than the best
solution found (BT_MAX_RMS times),
it is not accepted

PREJ_USE 0 RMS Error Estimation:
0 .. feature disabled, 1 .. feature enabled

PREJ_MAX 0.9 RMS Error Estimation:
Maximum rejection probability

PREJ_MIN_PREV 3 RMS Error Estimation:
Minimal required number of operations
with the same descriptor in statistics for
estimation.

PREJ_TYPE 2 RMS Error Estimation:
Type of rejection criterion
0 .. worse solution is rejected
1 .. random walk (worse solution)
2 .. simulated annealing
3 .. stochastic hill climbing

PREJ_RW 0.005 RMS Error Estimation:
Random walk: probability of acceptance
of worse solution

PREJ_TEMP 10.0 RMS Error Estimation: Temperature for
simulated anneal. or stoch. hill clim.
(remain constant during the search)

Table A.4. Available configuration parameters

A - 4

A.4.2. Section LINKS
This section describes a set of available elements for edges, see example A.5.

Currently implemented available elements are: CAP, IND, RES, MISTR, MGAP,
2PORT, OSTUB, PPRC, PSRC, RST4, SESTO, SESTS, SPRC, SSRC, SSTUB.
An element, listed in the section NODES can be also used, if it has two ports.
Element 2PORT represents arbitrary element with two ports described by S-
parameters table (see folder edmc\data).

LINKS
 RES
 2PORT data\\Mgf1801.spr
 my.elements.MYCAP
END

Figure A.5. Section LINKS
If the element is not included in the package edmc.elements, its location has to

be denoted in the list (in java notation, e.g. my.elements.MYCAP, where MYCAP
is the name of the class representing such element and my.elements is the package,
where the class MYCAP is located)

A.4.3. Section NODES
This section describes a set of available elements for vertices, see example

A.6. Currently implemented available circuit elements are: OPEN, SHORT, ITEE,
ICROS, ICIR, LOAD, MCPL. There are also several special elements based on
MCPL element with the fourth port opened (MCPL_OPEN) or shortened
(MCPL_SHORT) and with the second and the fourth element opened or shortened
(MCPL_OPEN_OPEN, MCPL_OPEN_SHORT, MCPL_SHORT _OPEN and
MCPL_SHORT_SHORT). Also arbitrary element listed in section LINKS can be
used (e.g. MGAP).

NODES
 SHORT
 ITEE
 ICROS
 MGAP
END

Figure A.6. Section NODES

If the element is not included in the package edmc.elements, its location has to
be denoted in the list (java notation, e.g. my.elements.MYCAP, where MYCAP is
the name of the class representation and my.elements is the package, where the
class MYCAP is located)

A.4.4. Section OPERATIONS
This section describes operations, which can be used and their initial weights.

Available operations are listed in the following table (Figure A.7).

A - 5

Operation Description
LinkParamModifier O1, changes a single parameter of an element assigned

to the arbitrary edge
NodeParamModifier O1, changes a single parameter of an element assigned

to the arbitrary vertex
LinkElementChanger O2, changes an element assignment of an arbitrary

edge
NodeElementChanger O2, changes an element assignment of an arbitrary

vertex
AddLink O3, adds an edge between two suitable vertices
RemoveLink O4, removes suitable edge (graph has to stay

connected)
SplitNode O5, splits a suitable vertex into two vertices connected

with an edge
AddNode O6, add a new vertex with an edge and connect it to a

suitable vertex
SplitLink O7, splits an edge into two connected edges
SplitLinkT O7+O6, splits an edge into two connected edges,

connects another new vertex to the created vertex
RemoveNode O8, removes a vertex with degree 1 and the

appropriate edge
RemoveNode2 O9, removes a vertex with degree 2, join the

appropriate edges into one
JoinNodes O10, joins two suitable vertices connected by an edge

into the one vertex
Figure A.7. Available circuit operations

An example of the section OPERATIONS is shown in Figure A.8. If there is
an operation not contained in edmc.operations package, name with package has to
be use, e.g. my.operations.MyOperation)

OPERATIONS
 LinkParamModifier 50
 NodeParamModifier 50
 LinkElementChanger 20
 NodeElementChanger 10
 SplitLink 6
 SplitLinkT 4
 SplitNode 6
 AddLink 4
 AddNode 4
 RemoveLink 5
 JoinNodes 5
 RemoveNode 10
 RemoveNode2 7
END

Figure A.8. Section OPERATIONS

A - 6

A.4.5. Section OPT
Section OPT describes the input requirements of the designed microwave

circuit. There are three types of requirements available: a requirement on a single
frequency, on a linearly distributed set of frequencies (keyword STEP) and on a
logarithmically distributed set of frequencies (keyword OPT).

A requirement consists from a parameter (e.g. transmission of a circuit), an
operation (e.g. less then), a value (e.g. -25 dB) and a weight of the requirement
(default weight is 1.0). A parameter consists from a type and from the row and
column of the S-matrix (denoted by type, character ‘S’, row and column - e.g.
transmission from first to second gate of a circuit expressed in dB is denoted by
DS21). Available types are denoted in Figure A.9 and available operations are
denoted in Figure A.10. An example of requirements is shown in Figure A.11.

Type Description
A Magnitude
F Phase
D Magnitude in dB
R Real part
I Imaginary part
G Operational transmission (S21*S21)
K Rollet stability factor

 Figure A.9. Types of requirement parameters

Operation Description
? No requirement
= Equal
> Greater than
>= Greater or equal
< Less than
<= Less or equal

Figure A.10. Requirement operations

OPT
 1.0 GHz DS21 < -25
 1.2 GHz DS21 < -25 w 5
 STEP 100 MHz 250 MHz 10 MHz AS21 > 0.9
 STEP 100 MHz 250 MHz 10 MHz DS11 < -33 w 2.3
 LOG 1 GHz 29 GHz 12 RS12 > 0
END

Figure A.11. Requirements example

So, a single requirement is described as a line in the OPT block, it consists of
frequency specification: single frequency, linearly distributed set of frequencies
described by STEP and their minimum, maximum and distance between them
(e.g. 100, 110, 120 MHz in the above example) or logarithmically distributed set
of frequencies described by LOG and their minimum, maximum and their amount

A - 7

(plus one – according to the specification in MIDE) (e.g. thirteen frequencies 1,
1.324, … 29 GHz in the above example).

A.5. Output Files
There are two output files: a CAD file with a description of the resultant

circuit in the net-list representation (see example in Figure A.12) and the CSV file
(table) with the characteristics of the resultant circuit (see example in Figure
A.13).

*Created: Wed Mar 26 17:36:52 CET 2003
*RMS Error: 0.00000E00 dB
*Total time: 163.07 s
*MIDE Analysis time: 138.00 s (84.62%), called 5396x (one
execution aprox. 25.57 ms)

*Requirements:
* STEP 1700 MHz 1700 MHz 1000 kHz DS21 > 17.0
* STEP 1700 MHz 1700 MHz 1000 kHz AS11 < 0.01
* STEP 1700 MHz 1700 MHz 1000 kHz AS22 < 0.01

* 81 frequenencies:
FREQ
STEP 1500 MHz 1900 MHz 5 MHz
END

BLO edmc 3 6
MISTR 3 4 W=540 mim L=45.64546 mm
RES 5 6 R=9.01785 ohm
ICROS 1 7 12 25
2PORT 1 2 data\\Mgf1801.spr
RES 7 8 R=521.31844 ohm
2PORT 11 12 data\\Mgf1801.spr
MISTR 25 26 W=1.52669 mm L=15.28378 mm
SHORT 26
ITEE 4 8 21
RES 21 22 R=12.13988 ohm
ITEE 2 15 5
MISTR 15 16 W=1.26851 mm L=31.1886 mm
RES 17 9 R=218.32565 ohm
2PORT 9 10 data\\Mgf1801.spr
ICROS 17 16 19 23
RES 19 20 R=83.7481 ohm
MISTR 23 24 W=2 mm L=14.99323 mm
SHORT 20
ITEE 22 13 11
RES 13 14 R=1002.3585 ohm
SHORT 24
SHORT 10
SHORT 14
END

Figure A.12 Example output CAD file

A - 8

freq[Hz] DS11[dB] DS12[dB] DS21[dB] DS22[dB]
1,500E+09 3,354207 -51,5210 45,86762 -9,83428
1,505E+09 3,695656 -51,6891 45,58129 -9,80518
1,510E+09 3,936849 -51,9098 45,24109 -9,83215
1,515E+09 4,086431 -52,1783 44,85206 -9,91719
1,520E+09 4,154911 -52,4870 44,42170 -10,0578
1,525E+09 4,153712 -52,8272 43,95897 -10,2490

...
Figure A.12 Example output CSV file

B - 1

Appendix B Program Extension Examples

In this appendix, two examples of creating a new circuit element and a new
circuit operation are presented.

B.1. New Circuit Element Implementation
Each circuit element, which can be used in the design, has appropriate element

in the MIDE’s net-list and also appropriate class implemented. Such class has to
be extended from the abstract class edmc.elements.AbstractElement. It has to have
several methods implemented:

Method Description
constructor Creates an element, assign values to all parameters.
getNrGates() Returns number of ports of the element

(e.g. 2 for resistor)
getNrParams() Returns number of parameters of the element

(e.g. 1 for resistor – its resistance)
getParameterBounds(i) Returns i-th parameter‘s bounds
getName() Returns name of the element in MIDE
getParameter(i) Returns value of the i-th parameter
setParameter(i,val) Sets value of the i-th parameter
toString(int[] nodes) Return net-list representation of the element

(as a string)
getWidthParam(int i) For micro-stripes: returns the number of the parameter

which represents width for the i-th port
(or -1 otherwise – e.g. if there is no width)

Figure B.1. Element’s API

Probably the most interesting part of the API is the method toString(int[]). It
has one parameter – the array of numbers – which are assigned to the appropriate
ports of the element. Result is a string, appropriate line of the net-list
representation.

The following example B.2 shows a complete implementation of the SPRC
element.

B - 2

/** Circuit element SPRC */
package edmc.elements;

import edmc.util.*;

public class SPRC extends AbstractElement {
 /** Parameters bounds – consit from name, unit, min, max
 * and implicit value */
 protected static ParameterBounds BOUND_IND
 = new ParameterBounds("L","H",1e-19,1400,2e-9);
 protected static ParameterBounds BOUND_CAP
 = new ParameterBounds("C","F",1e-33,1e-3,1e-13);
 protected static ParameterBounds BOUND_RES
 = new ParameterBounds("R","ohm",1e-17,5e34,1.1e34);

 /** Parameters L, R, C */
 double iL,iR,iC;

 /** Constructor */
 public SPRC() {
 iR = ToolBox.random(getParameterBounds(0));
 iL = ToolBox.random(getParameterBounds(1));
 iC = ToolBox.random(getParameterBounds(2));
 }

 /** Number of ports */
 public static int getNrGates() { return 2;}

 /** Number of parameters */
 public static int getNrParams() { return 3;}

 /** Returns bounds of i-th parameter */
 public static ParameterBounds getParameterBounds(int i) {
 switch (i) {
 case 0 : return BOUND_RES;
 case 1 : return BOUND_IND;
 case 2 : return BOUND_CAP;
 default : return null;
 }
 }

 /** Returns width parameter for i-th port ... -1 not used */
 public static int getWidthParam(int node) {return -1;}

 /** Returns name */
 public String getName() {
 return "SPRC";
 }

 /** Returns net-list representation */
 public String toString(int[] nodes) {
 return getName()+" "+nodes[0]+" "+nodes[1]+
 " R="+ToolBox.formatValue(iR)+"ohm"+
 " L="+ToolBox.formatValue(iL)+"H"+
 " C="+ToolBox.formatValue(iC)+"F";
 }

(continues on the next page)

B - 3

 /** Return string representation – for debug purposes */
 public String toString() {
 return getName()+" R="+ToolBox.formatValue(iR)+"ohm"+
 " L="+ToolBox.formatValue(iL)+"H"+
 " C="+ToolBox.formatValue(iC)+"F";
 }

 /** Returns value of i-th parameter */
 public double getParameter(int i) {
 switch (i) {
 case 0 : return iR;
 case 1 : return iL;
 case 2 : return iC;
 default: return 0;
 }
 }

 /** Sets i-th parameter */
 public void setParameter(int i, double value) {
 switch (i) {
 case 0 : iR=value; return;
 case 1 : iL=value; return;
 case 2 : iC=value; return;
 }
 }
}

Figure B.2. SPRC circuit element representation

B.2. New Circuit Operation Implementation
Available circuit operation are located in the package edmc.operations, each

circuit operation has to be extended from abstract class edmc.operations.
CircuitOperation. There has to be following four methods implemented:

Method Description
boolean
process()

Selects operation‘s operands, applies the operation to the current
circuit and returns true. If there are no suitable operands (e.g. no
edge can be removed) it returns false (operation was not applied).

boolean
redo()

Local optimization: it changes parameters affected by previous call
of method process (or redo, when the changes are accepted). (redo
can be called several times)

good() Called when changes made by process or redo are accepted.
toString() Returns operation’s classification (descriptor)

Figure B.3. Operation’s API

So, in each iteration step, the current circuit is memorized first. An operation
is selected and the appropriate method process is called then. If it returns false,
nothing was changed and the algorithm returns to the selection of an operation.
Otherwise, the changed circuit is evaluated and if the local optimization is used
(as described in section 2.7.1) the method redo is called several times –
parameters changed by method process are optimized. If the changed circuit is
accepted, method good is called (can be called after process method and each
redo). This affects the mean values of the distribution used the selection of

B - 4

parameters’ values (previous accepted values are used). Last accepted circuit or
the previous one (if there was no circuit accepted) is used for the next iteration.

The following example B.4 shows a complete implementation of the O6
operation: A single-edge vertex is created and connected with an edge to
suitable vertex (with less then four connections, not i/o vertex). Suitable elements
are assigned to the changed vertex and to the created edge and vertex.

/** Operation O6: A single-edge vertex is created and connected
 * with an edge to suitable vertex (with less then four
 * connections, not i/o vertex). */
package edmc.operations;

import edmc.circuits.*;
import edmc.design.*;
import edmc.util.*;
import java.util.*;

public class AddNode extends CircuitOperation {
 /** For classification descriptor – selected vertex */
 private String iFromStr;
 /** Selected suitable vertex*/
 private Vertex iSelectedVertex;
 /** New created vertex */
 private Vertex iNewVertex;
 /** New edge between selected and new vertex */
 private Edge iNewEdge;

 /** Constructor */
 public AddNode(Designer designer) {
 super(designer);
 }

 /** perform operation, returns false of operation was not made*/
 public boolean process() {
 //Select a suitable vertex
 Vector suitableVertices = new Vector();
 for (Enumeration e=getCircuit().getGraph().getVertices();
 e.hasMoreElements();) {
 Vertex v = (Vertex)e.nextElement();
 if (v.countEdges()<4 && !getCircuit().isIO(v))
 suitableVertices.addElement(v);
 }
 if (suitableVertices.size()<1) return false; //no suitable v.

 iSelectedVertex = (Vertex)getDesigner().getVertexSelector().
 select(suitableVertices);
 if (iSelectedVertex==null) return false; //no vertex selected

 iFromStr = iSelectedVertex.getName(getCircuit());

(continues on the next page)

B - 5

 // select classes for selected vertex and new edge & vertex
 Class selectedVertexClass =
 (Class)((NodeElementSelector)getDesigner().
 getNodeElementSelector()).
 select(iSelectedVertex.countEdges()+1);
 Class newVertexClass =
 (Class)((NodeElementSelector)getDesigner().
 getNodeElementSelector()).select(1);
 Class newEdgeClass =
 (Class)getDesigner().getLinkElementSelector().select();
 if (selectedVertexClass==null || newVertexClass==null ||
 newEdgeClass==null) return false; //element not selected

 // alter graph
 iNewVertex = getCircuit().getGraph().createVertex();
 iNewEdge = getCircuit().getGraph().
 createEdge(iSelectedVertex,iNewVertex);

 // create & assign elements
 iSelectedVertex.setElement(
 Circuit.createElement(selectedVertexClass));
 iNewVertex.setElement(
 Circuit.createElement(newVertexClass));
 iNewEdge.setElement(
 Circuit.createElement(newEdgeClass));

 return true;
 }

 /** alter modification – alter another elements */
 public boolean redo() {
 // select classes for selected vertex and new edge & vertex
 Class selectedVertexClass =
 (Class)((NodeElementSelector)getDesigner().
 getNodeElementSelector()).
 select(iSelectedVertex.countEdges());
 Class newVertexClass =
 (Class)((NodeElementSelector)getDesigner().
 getNodeElementSelector()).select(1);
 Class newEdgeClass =
 (Class)getDesigner().getLinkElementSelector().select();
 if (selectedVertexClass==null || newVertexClass==null ||
 newEdgeClass==null) return false; //element not selected

 // recreate & reassign elements
 iSelectedVertex.setElement(
 Circuit.createElement(selectedVertexClass));
 iNewVertex.setElement(
 Circuit.createElement(newVertexClass));
 iNewEdge.setElement(
 Circuit.createElement(newEdgeClass));

 return true;
 }

 /** redo or process accepted notification */
 public void good() {}

(continues on the next page)

B - 6

 /** returns operation classification */
 public String toString() {
 return iFromStr+" -> "+
 iSelectedVertex.getName(getCircuit())+"-"+
 iNewEdge.getName(getCircuit())+"-"+
 iNewVertex.getName(getCircuit());
 }
}

Figure B.4. Implementation of operation O6 – class AddLink

C - 1

Appendix C CD-ROM Content

This diploma thesis includes a CD-ROM with electronic form of this thesis,
implemented program, program documentation and source codes and several
examples. The papers [14], [15] are also included.

Folder or file Content
\thesis\thesis.pdf This diploma thesis in PDF format
\thesis\commite03.pdf Paper [14], “Evolutionary design of Microwave

Circuits”
\thesis\cadcea02.pdf Paper [15], “Evoluční návrh filtru”
\edmc Implemented program
\examples\amplifier Example: amplifier
\examples\filter Example: pass band filter
\examples\splitter Example: frequency splitter
\src\src.zip Program source codes
\doc\index.html JavaDoc (source) documentation
\extra\java Java Runtime Environment 1.4.1
\extra\acrobat Acrobat Reader 5

Figure C.1. Included CD-ROM Content

