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Abstract
Fast messy genetic optimisation is found suitable

for complex microwave circuit design. Increase in
computation speed is achieved using several ordinary
computers connected to a network. Calculations are
running on background so that computers can be used
for other purposes at the same time. When applied to
microwave circuits, a modification to previous genetic
optimisation methods proved suitable. Dynamic
change of bounds has significantly improved
convergence rate. The new method has found global
minimum in each run, while classic methods failed for
some starting points.
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1. Introduction
Circuit optimisation became one of the applications most
used by microwave engineers. Due to the nature of
microwave circuits, the optimisation task is far from easy.
Error functions mostly suffer from local minimum
problems, so that in many cases the optimisation gets
unbelievably inefficient.
During larger microwave structure optimisation local
iteration methods tend to fall into local minimums. Hence,
the new - global - methods like simultaneous annealing,
taboo method or genetic algorithms are being used lately.
The more variables we try to tune, the bigger state area gets
and the optimisation on a single machine becomes rather
slow. For overall speedup, several computers connected to
each other are used.

The genetic algorithm (GA) is a stochastic global search
method that mimics the metaphor of natural biological
evolution. GAs operate on a population of potential
solutions applying the principle of survival of the fittest to
produce (hopefully) better and better approximations to a
solution. 

2. Fast Messy Genetic Algorithm 
Fast messy genetic algorithm (fmGA) is a special

clone of common simple genetic algorithm (GA). This type
represents new, more powerful kind in the GA branch. It
resists premature local-minimum fall and solves problems
in shorter time. 

A gene is represented by a pair (allele locus, allele
value) in messy algorithms, so that – for instance –
chromosome (2,0),(0,1),(1,1) represents 3 bit-long
chromosome 110. Operation cut and splice are used to
bread new offspring. Incomplete specification of the
chromosome (underspecification) or redundant
specification  (overspecification) could occur during
evolution. Overspecification is solved by right-to-left scan,
i.e. the only first occurence of an appropriate pair is taken
into account. For example: ((0,0), (2,1), (1,0), (2,0))
represents chromosome 001. On the other hand,
underspecification is harder to deal with. We must
complete the chromosome in order to be able to evaluate its
fitness function (FF). Hence a template is used – see Fig. 1.

The algorithm works in two main iteration cycles – in
the inner and outer loops. Each new start of outer loop is
called as an era. The change of building-block order
together with inner cycle launching is the main aim of this
cycle. 

Fig. 1 Representation of a solution – chromosome.
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Inner cycle consists of three phases: 

1) initialisation

2) building block filtering phase

3) juxtapositional phase

     

Detailed description of the algorithm could be found
in [1], [3] and [4].

3. Improvements
We have decided to use this algorithm for microwave

circuit optimisation. In order to save time, circuit analysis
and Fitness Function (FF) evaluation has been carried out
using the source code of a microwave CAD program called
MIDE (see [2]). Implemented algorithm is based on [1]
with the following important modifications:

3.1 Parallel multitasking
The bottleneck of any common algorithm is in the

time consumption of FF evaluation – even a simplest
circuit gets evaluated hundreds to thousand times per
second. If one uses almost any global search method (and
GAs specially) hundreds of thousands evaluations are
required. The local area network has been used and the task
has been divided to many common workstations. The
application has been running under multitasking
environment so that computers could be used for ordinary
tasks like writing reports or playing games. At no extra
cost, performance exceeding any single PC has been made
available.

3.2 Implementation 
Parallel computation machine was implemented using

common client-server model. The first idea led to
launching single fmGA algorithm on the server and then
distribute appropriate variables together with optimising
circuit to the clients. Clients then perform evaluation
(compute the solution) and return result to the server. In
order to minimize the total network overhead we suggested
batch processing (a bundle of waiting states are together
send to the client and then – after evaluation – the same
bundle of solutions are returned).

3.3 Quantization-step choice
During the process of FF discovering we encounter

the problem with quantization. This process is comparable
with converting analog signal to its digital form. Let’s look

at trivial example: let change FF progress according to
figure 2 (i.e. FF is depends on only one variable).  As one
can see there exist three local minima in points 39, 68 and
101. Last mentioned point represents global minimum.
Figures 3, 4 and 5 show FF curve under 4-, 5- and 6-bit
sampling. Global minimum can be successfully discovered
only in the last case (6 bits per variable). The others
sampling rates are incapable of doing the same. 

We can result from such example easy theorem: the
more bits-per-variable we choose the better results we can
expect. 

In these days, when computers’ performance reaches
hundreds of MIPS, using of sampling with tens of bits per
variable is quite common. After all, analyses of the time
profile of the one iteration show that genetic operations
consume at most 10% of total time. 

However resolution we choose we can’t prove that
such adjustment is capable of true global minimum
discovering (i.e. we can’t prove that the minimum we have
just fallen into is not only at the edge of a very steep “FF
crater” where we can get into with a bit higher resolution). 

0

40

80

120

0 12 24 36 48 60 72 84 96 10
8

FF
-v

al
ue

Fig.2. An example of 1D optimisation problem (1 variable); This
curve is object of quantization process for purposes of
computer processing.
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Fig. 3 Quantization process -16 steps
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Fig. 4 Quantization process -  32 steps steps
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Fig.5 Quantization process: 64 steps

In spite of the above-mentioned consideration, the
practical implementation brings very clear question: “How
many bits are consequently sufficient?” We have
incorporated new method to the structure of fmGA in order
to solve satisfactorily this problem. 

3.4 Mapping and dynamic change of
bounds
Previous paragraph described possible reasons of

failure during searching of global FF minimum among
many local ones. This problem is one only one we hint at.
Let us demonstrate one more imperfection (see figure 2). If
we perform linear sampling at whole interval (what is
necessary because of the lack of the knowledge of FF
curve) we will obtain subinterval 0-30 where no minimum
exists. So-spent bites uselessly occupy space at the expense
of the rest of the interval (the remaining interval can be re-
sampled with higher resolution with the same number of
sampling bits).

That’s the next argument that (with the other ones)
led us to map variable via some additional layer during
sampling process.

Fig. 6  “Local” interval after first iteration

Consider a variable on a constrained interval and let
optimise this variable (see fig. 6). We can regard  it (for
explanation purposes) as the variable called L that stands
for inductance of a real inductor. We estimate that desired
solution must lie within 100pH - 100nH (the inductor
simply can’t be fabricated with values outside this
interval).   

Let’s call such boundaries as global bounds.  These
bounds must be known for quantization process. Let’s
perform a quantization and launch the optimisation
process. First, the algorithm will try to discover areas
where some local minima lie (first run of the algorithm).
Second, after finishing such first stage, program will mark

the most promising (the best so-far found) minimum (i.e. a
minimum with the lowest FF value) and recalculate bounds
of area we perform searching according to equations 1 and
2. 

)
4
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MINMAXFFMINMIN −
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)
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MINGLOB a MAXGLOB denote global bounds, (i.e.
bounds, that user had entered before launching the
application), FFBEST-F stands for the best local minimum
discovered so far, MAXOLD a MINOLD describe bounds
from previous run of optimisation (see below) and symbols
min a max are functions (min (0,1)=1; max (10,20)=20).

Fig. 7  Example of fmGA mapping process 
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Let’s illustrate whole procedure with the following
example (see fig. 7):

Variable A is quantizied with 4-bit resolution, i.e. 16
possible states (24). Global bounds are set within 0-110.
First run of algorithm minima 40, 85 and 105 are
discovered. The best-found minimum is chosen (imperfect
4-bit resolution causes that the best one is minimum 40).
Now, bounds are changed so that the position of this
minimum should be (if possible) centred and the range of
bounds twice reduced (see equations 1 and 2) and new
round of optimisation process is launched.   

Such change helps us to discover better local
minimum (point 66), that is in the last step marked as
global... On the other side, this process can lead to the
paradoxical situation, where periodical repetition will
cause locking in a local minimum. That’s the reason why
the algorithm “soften” bounds as long as the FF goes
rapidly down. Otherwise one or more steps are rolled back. 

3.5 Working with real numbers 
Above-mentioned mapping procedure can be used

while working with real numbers. First, let me shortly
remind representation of decimal integers and real numbers
in binary system (see tab. 1 and fig. 8). 

While representation of integers in binary system is
the same as in decimal one – i.e. it is performed one digit
place by another, the real numbers are represented
differently. First of all, each number is normalized (i.e. its
format is modified as: [sign; mantissa; exponent]) and after
it transferred into binary form. 

Developer ‘s aim was quite clear – they tried to reach
the best resolution as possible at given bit rate.

However, such representation makes troubles to
common simple GAs while the process of sampling.
Change of only one bit of exponent can represent huge
change of variable value. The change can lead to leave
hardly found local minimum. Yes, it’s effective method
that helps us recovering from local minima, but it also
degrades the whole algorithm to almost random search
method (each new crossing-over  brings very different
results; these results are either rapidly worse and then they
are eliminated or the better ones – but they are discovered
more or less by chance).

0 1 2 3 4 5 6 7

000 0001 010 011 100 101 110 111

Tab. 1. Representation of decimal integer in binary digit system
(3 bits number).

Fig. 8. Representation of real number in binary digit system.

Mapping method such disproportion effectively
eliminates. Interval is linearly divided (quantizied) and the
searching method doesn’t differ from the one used in
example that works with integers. Consider fig. 9 as an
example: 3 bits are available for one (real) number;
minimum is 3.05, maximum 14.56.

Fig. 9 Real-number mapping

Other points are linearly interpolated according to the
equation 3 (results are in table 1).

1−
−

⋅+=
COUNT

REALREAL
REALN N

MINMAXNMINSTEP (3)

STEPN denotes particular quantization  step,
MINREAL, MAXREAL stands for minimum a maximum of
actual interval, NCOUNT number of quantization steps.

KPOS IVALUE KPOS IVALUE

000 3.05 100 9.63
001 4.69 101 11.27
010 6.34 110 12.92
011 7.98 111 14.56

Tab. 2.  Result of interpolation

KPOS denotes quantization position, IVALUE is
interpolated value.

This example clearly shows that described method is
versatile and it is usable for all kinds of real numbers
(single, real, extended) – i.e. it can be used for arbitrary
length of the pair [mantissa; exponent].

3.6 Results
We intend to construct a robust method, that would be

able to found a solution in all cases (if a suitable one
exists) apart from the starting point. Even such assumption
looks quite easy, there are countless number of problems
where classical methods fail. As an example that is easy to
understand but not rather easy to optimise, we chose a
textbook optimisation problem, see Fig. 10. 

Normalized Mantissa Exponent

n-bit number

min=3.05 min=14.56

Variable A
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Fig.10. Test case – two shorted stubs in parallel to a line

The task follows: find electrical lengths L1 and L2 of
two short-ended stubs, connected to a transmission line in
parallel, so that the transmission coefficient would be
lower than –25 dB between frequencies 6 GHz and 6.2
GHz. Simultaneously we want to achieve transmission
better than -0.5 dB at 3 GHz. These demands are
schematically shown in Fig. 11.

In the case the lengths are to be found in a range
between 1 and 180 degrees for both stubs, the task is quite
easy and any optimisation method works. To obtain a good
test case, we try to find the optimum in a wider range, say
1 – 1000 degrees. FF shape then exhibits a number of local
minima. The reason is obvious – electrical character of
both stubs is repeated every 180 deg. Global minimum
discovery in such selected area is almost impossible for
common optimisation methods – see Fig. 12. Typical
simplex methods will mostly find a local minimum,
however, FF is always bigger than 0 (not all goals are met).
A few examples of such solutions are shown in Fig. 13.

Fig. 11 Fitness function surface plot shows a number of local
optima.

As can be observed from these examples – classical
methods are capable of discovering minimum sometimes –
dependable on starting (mostly randomly generated) point.
Our experiments proved that in only 7 of 10 performed
simulation runs classic methods discovered minimum. 

Fig.12. Forward transmission for correct solution (approx 175 and
178 degrees @ 6GHz

Using the new method, we started from the same
point (we filled up variables with the same start values
similarly  to the above mentioned optimisation method)
and carried out several optimisation runs.  In all runs the
global minimum has been found.
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Fig.13. Some of the false solutions produced by ordinary
optimisation methods.

Fig.14 Fitness function plotted against eras.

Fig.15. Detailed sketch of solution evolution describing method
behaviour in local optima

The process is illustrated at Fig. 14. Notice one
important feature: during the launching of a new era, the
best so-far found chromosome is copied into template. It
results in temporary degradation of FF (you can see bumps
in the graph), however, in a few moments a new – often
better - solution is found. Such iterative progress is typical
for messy algorithms. 

Figure 15 shows effect of dynamical change of
bounds. It arises at the end of 6th, 12th and 17th era (vertical
red lines). Please note, that there are significant temporary
FF degradations, but the local minima are left (ellipse
areas).

3.7 Parallel fmGA server
The new method  combines both mentioned

improvements together: clients no more behave only as
silly slaves (whose only task is fitness function evaluation)
but each of them runs its own fmGA algorithm. Server side
must solve the area division problem. Server can than send
to each client only some sub-bounds of original problem.
Each client receives different bounds and thus totally
independently tries to discover solution(s) in its own sub-
area. 
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3.8 Area division problem
Division of an 1-D area is obviously the simplest task

– see Fig. 16. Appropriate areas are a little bit overlapped.
It was found useful in cases when the right solution lay
near the border of a sub-range. 

Fig. 16. Example of division and overlapping in 1-D area.

Situation appears rather harder for n-dimensional area
(where N>1). Of course, we can perform the same division,
but the less clients we have the coarser the division is
(especially in case of many variables with large bound
limits). A right solution can be discovered with much less
probability. Keeping the uniform division step for all
variables is a better technique, however we must cope with
the situation that we create more intervals than cooperating
clients. The above mentioned reasons made us to
implement so-called computational stack, i.e. a structure
that temporarily saves areas which wait for exploration –
see Fig. 17 and 18.

As soon as the stack is empty (and no suitable
solution has been found), results from all sub-areas are
compared together and area bounds are changed so that
they more tight surround so-far best found solution (i.e.
dynamical change of bounds). If there are more than one
area, where partial results are comparable, all of these areas
are processed – one is explored and the others are saved
into stack for later exploration. 

Fig.17 Example of division and overlapping in 3-D area.

3.9 Gradient method incorporation
First experiments of suggested method shown that

time spent on discovering near neighbourhood of FF
minimum and time spent on falling into the minimum are
for algorithm fmGA almost comparable. I.e. the algorithm
is capable of discovering the surrounding of solution in
quite large search space, but at the present there exist better
algorithms (typically gradient methods) for quick
discovering of  FF - peek.

Subrange 1 Subrange 3

Subrange 2

Variable A

........ ........

Variable A

Variable B

Variable C

Subrange A-B-C

http://gal4.ge.uiuc.edu/pub/
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Fig.18 Sketch of parallel computation engine.

3.10 Conclusions
Fast messy genetic optimisation is a promissive

method found suitable for complex microwave circuit
design. High computational load can be overcome at nearly
no cost using several ordinary computers connected to a
network. Running calculations on background enables
other users to do their jobs at the same time. 

A modification to previous genetic optimisation
methods, suitable for microwave circuits, proved to work
and significantly improved convergence rate.

Above mentioned example of two radial stubs is only
one of the tasks that the method is currently used for. We
have used it because of its simplicity. The method seems to
be very useful in cases, where an equivalent circuit of some
real problem is known but the circuit has many unknown
parameters. 
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