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Abstract
A new approach suitable for determination of the

maximal stable time increment for the Finite-
Difference Time-Domain (FDTD) algorithm in
common curvilinear coordinates, for general mesh
shapes and certain types of boundaries is presented.
The maximal time increment corresponds to a
characteristic value of a Helmholz equation that is
solved by a FD method. If this method uses exactly the
same discretization as the given FDTD method (same
mesh, boundary conditions, order of precision etc.),
the maximal stable time increment is obtained from the
highest characteristic value. The FD system is solved
by an iterative method, which uses only slightly altered
original FDTD formulae. The Courant condition yields
a stable time increment, but in certain cases the
maximum increment is slightly greater([2]).
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1. Introduction
Solution of Maxwell’s equations in time domain is

becoming increasingly important as a tool for microwave
component analysis. The precision of electromagnetic field
modeling is a complex question. One major factor that has
a considerable influence on the precision is the time
increment ( t∆ ) of the FDTD algorithm. An optimal value
of t∆  exists, resulting in fastest and most precise
computation. The other reason for setting this constant
properly is that even a small excess over its optimal value
would result in instability of the algorithm. There is a
condition for t∆  called Courant ([1]), valid only for
rectangular coordinates and an infinitely large mesh. A
new approach applicable under more general conditions
has been used.

2. Theory
In order to describe the principle of the method, let us

consider an example of FDTD for only 2 dimensions:
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These equations require comments:

• Time position of the field samples is marked by the upper
suffix; n is integral ( Zn∈ ).

• Space differences are not written in full, since the space
scheme can be arbitrary. The space scheme is in fact an
approximation (discretization) of the continuous curl
vector operator and in (1) “curl” is only a placeholder for
the particular discretization.

• It is marked explicitly what component of curl
approximation is computed (lower suffix) and what it is
computed from: e.g. in (1h) the zH  component is updated
using the z component of curl, which is computed using
both n

xE  and n
yE .

• For sake of simplicity, only a certain field mode is
considered: field components remain constant in the
direction of z axis.

• The time scheme of (1) together with the constants (2) is
applicable for media with significant losses ([1]). Medium
properties are described by Eσ , Mσ , ε  and µ .

2.1 Time dependence cancellation,
formulation of stability
In order to get frequency-domain formulae, let us

substitute the following time dependence into (1).
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where j is the imaginary unit and ϕ  corresponds to angular
frequency. Similar procedure can be found in [1].

The formulae follow:
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The formulae (4) present a set of equations for the
unknown ϕ . The FDTD algorithm (1) is stable, if the
following condition is met for all possible ϕ :

{ } 0Im ≥ϕ            { } 0Im >ϕ (5a,b)

In order to be strict, (5b) must be taken into account,
in order to ensure stability in all cases. If a limit of stability
for t∆ , called critical time increment ( ct∆ ), will be
derived using (5a), we will be aware, that at the very limit

ct∆  the FDTD may not be stable. For practical cases it has
no use, anyway.

We will explain in short why the algorithm (1) can be
instable for { } 0Im =ϕ  (though the functions (3) are
bounded): The functions (3) are in fact solutions of the
differential (the discrete case is analogous) equation that
describes evolution of the field in time. Its solution is

tt BeAe 21 λλ +  , which is equivalent to (3). The problem is if

21 λλλ == , as the solution is different: tt teBAe λλ + . We
will not discuss this special case any further. 

The solutions of (4) must be discussed now.

2.2 Lossless case
First, let us consider lossless case ( 0== ME σσ ).

The formulae (4) will have the following form:
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A method described in the next chapter is used to
obtain the values of k. For the calculations in this chapter it
is necessary to know that these values are real ( Rk∈ ),
that there is a finite number of them and that for each k

there is also -k. Here it is to discuss only the relationship
among k, ϕ  and t∆ , which is suggested in (6e’):
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It can be seen that the maximum value of t∆ , for
which (5a) is true for all the possible values of k, is given
by (7) when

πϕ = (8)

Further, the maximum value of k ( mk ) must be substituted:

12
1 =∆ cm tk (9)

2.3 Solution of the FD scheme for
Helmholz equation
The equation set (6), which is to be solved, is in fact a

finite-difference (FD) scheme that can be used to solve a
Helmholz equation numerically; the Helmholz equation
can be obtained by elimination of E from (6): 
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This form ((10)) can be used to denote both the continuous
Helmholz equation and its FD scheme. The latter can be
obtained, if the particular discretization is substituted for
curl. In this case the notation ∆  would not stand for the
continuous Laplace operator, but for its discrete equivalent.

The solutions of (10) are characteristic functions
(called modes), corresponding to characteristic values k.

In [2] a method for solving a discrete system like (10)
or (6) is presented. It makes use of the variable separation
principle and therefore it can handle only certain boundary
conditions. A more general iterative method ([3]) can be
used:

The term zH∆  is evaluated at all the mesh points and
these values are used to compute k by means of (10).
Because (10) is not satisfied, different values k will be
obtained at every mesh point. Rayleigh’s formula is used to
produce an estimation of k. Then, this estimation together
with the values zH∆  is used to correct the distribution of H
using (10). The process is stopped if the change in k is
sufficiently small.

In order to obtain the correct k (and hence ct∆ ), the
FD scheme (10) must be exactly the same as the space
scheme of the FDTD method itself (i.e. same spacing of
corresponding samples, boundary conditions, order of
precision, coordinate system). It is easy to fulfil this
condition and moreover it is not necessary to eliminate E
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components from (6) as it is suggested in (10). The desired
values of zH∆  can be easily obtained directly from (6) in
two steps: First, E is computed from H using (6e,6e’). The
values of H computed back from E using (6h) are the
values of zHk ∆)1( 2 . It is simple to change the
programmed FDTD (1) and obtain the FD form (6).

Following comments must be mentioned:

• The mesh can have arbitrary shape, but the method was
tested only with the simplest boundary conditions – zero
elements (be they E or H) at the boundary. And these
conditions are assumed in the following text.

• It holds that Rk∈ . One could think at first glance at (6)
that complex arithmetic is necessary to be used, but it is not
true (consider e.g. the substitution HjH ′= ).

• A discrete mode with the maximal characteristic value
mk  exists (unlike the continuous case).

• The material properties ε  and µ  in (10) (and thus also
in (6)) need not be independent on space position (although
in this case naming the equation Helmholz may not be
justified). Convergence of the method was verified
experimentally.

• The discrete mode with the maximal k is distorted so
much that it cannot be considered to be an approximation
of a continuous mode any more (it is possible only for low
k). 

Iterations of this method require an initial space
distribution of zH . It shows that the corresponding mode
of interest (the one with mk ) has the following property: all
the samples neighboring in the directions of all the space
coordinates have opposite sign. In order to obtain the mode
of interest, the initial distribution has to respect this. In all
the experiments the following distribution yielded the
desired mode:
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where i,j are integer indices to the field of samples.
The formula does not hold for the zero H samples at the
boundary (if there are any). The formula is valid for our 2-
dimensional example, but it can be extended to 3
dimensions easily.

2.4 Lossy case
Let us mark certain parts of (4) in the similar way it

was done in (6e’): 
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In the lossless case it was possible to obtain the FD
scheme for the Helmholz equation in the form (10), thanks
to the fact that k (see (6e’)) was constant. In this case,
however, ek , hk  may vary with space position (according
to material properties), which would produce a FD scheme
with variable and (moreover) non-linear coefficients.
Despite these facts an experiment employing a modified
method from the previous chapter was found to yield
correct results. The only fault is that in this general case we
were not able to prove the condition for the limit of
stability, which, as it shows, is given by (8), again.

We were able to prove (8) only for the case of
constant material properties: In this case ek and hk  are
constant as well and a formula like (10) can be obtained (in
(10), ε  and µ  must be removed and ehkkk =
substituted). We will show certain steps of the proof only
for the special case pEM == εσµσ 22 . The formula,
corresponding to (7) in the lossless case, follows:
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The left-hand side of (13) is linearly proportional to 2k ,
proportional to t∆  and is always real and non-negative.
The right-hand side can be real, if the imaginary part of ϕ
compensates the term tjp∆−  or if πϕ =}Re{ . Growth of
the left-hand side (due to a greater t∆  or k) can be
compensated by growth of }Re{ϕ , provided that

tjp∆=}Im{2
1ϕ . It is true, until sin reaches its maximum in

real domain – after that }Re{ϕ  remains equal to π  while
}Im{ϕ  starts to decrease and can become even negative,

which means instability.

The formula (13) could be used to determine ct∆ , if
(8) and mk  were substituted into it. We used a different
method, capable to handle even the fully general case: 

Let us write (4) for the stability limit (8) and let us
introduce a constant k ′ in it artificially: 
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These formulae have exactly the same form as those for the
lossless case ((6)). An initial guess of t∆  determines the
space distribution of ε ′  and µ′  and (14) can be solved for
k ′ by the described method. The artificial constant k ′
should be 1 in order to get the correct ct∆ . In the next step

t∆  is corrected and the procedure is repeated until k ′ is
sufficiently close to 1. After an ideal correction of t∆  the
resulting value of µ′  (and similarly ε ′ ) should be k ′ -
times greater compared to the same value before the
correction. In such an ideal case it is true that if k ′  is set to
1, then (14) is automatically satisfied, because the
correction does not change the set of equations in fact. We
would arrive to the solution in one step. It could be done,
however, only if the material properties were independent
on space position or if the dependence of µ′  and ε ′  on t∆
were linear (lossless case). In the general case a change in

t∆  changes the coefficients in the difference equation (14),
therefore more iterations of this method are inevitable. 

In the experiment the correction iii ktt ′∆=∆ +1  was
used and the method showed to be convergent. We have
not proved this, but the character of the dependence

)( t∆′µ  or )( t∆′ε  promise not to disturb the stability: The
derivative of these functions is positive and does not
increase as t∆  grows. Therefore if t∆  changes k ′ -times
( 0>′k ), the change in  µ′  (or ε ′ ) is smaller than k ′ -
times or is exactly k ′ -times (if the material in the given
space cell is lossless).

2.5 Compact notation of FDTD update
formulae
This chapter is added here not only in order to save

space during description of the experiment. A very simple,
yet exact and well-suited notation, which is especially
convenient for theoretical derivations, will be presented.
The compact form can be used for abbreviation of the
FDTD formulae in rectangular ([1]) and cylindrical ([4])
coordinates and it yields the general form of the
coefficients (2) ([1]). FDTD in spherical coordinates, an
algorithm of adequate complexity for our experiment, was
not found in any literature and therefore it was constructed
using this approach.

The compact scheme is a result of expressing
Maxwell’s equations i) for corresponding coordinate
system, ii) in differential form, iii) as a sum of so-called
self-adjoined terms:
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uf

g
∂
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where C is a field component, u stands for a coordinate
( 321 ,, uuu  or t) and g or f for a function. 

It is always possible to write the equations this way,
as we can make use of the curl operators written by means
of the local length units ( 321 ,, hhh ) (see e.g. [5]). An
example, first Maxwell’s equation for one vector
component, follows:
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This equation holds for the coordinate 1u  of the coordinate
system; – the other 2 equations can be obtained by cyclic
interchange of indices 1,2,3. The second Maxwell’s
equation is analogous.

The FDTD is defined by the discretization
prescription (or approximation) of (15). Different
prescriptions result in different algorithms with
corresponding order of precision. The following
prescription is considered here:
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Explanation, further specifications of (17) and
comments are required; let us suppose that we want to
write the approximation (17) for the point [ ]321 ,,, uuut :

• The generic coordinate u in (17) can stand for 321 ,, uuu
as well as for time t.

• Difference of 2 neighboring field samples, 
2
1−C ,

2
1+C  is

used. The samples are located u∆− 2
1  and u∆+ 2

1

(respectively) in the direction u from the point of
approximation.

• The difference is weighted by corresponding values of f –
samples of f are taken at the points of the samples

2
1−C ,

2
1+C .

• The sample of function g (i.e. 0g ) is taken at the point of
approximation

• The interval, along which the integral is computed, is an
oriented abscissa form the point of 

2
1−C  to 

2
1+C .

• It is necessary to respect the fact that the approximation
is valid at [ ]321 ,,, uuut  (which is known as central-
difference principle). Approximation of all the terms of
Maxwell’s equations has to be valid at the same point. 



Radioengineering Exemplary Document for the Paper in Radioengineering 5
Vol. 11, No. 1, April 2002 V. NAVRÁTIL, Z. RAIDA

This fact induces formation of the corresponding
discretization mesh ([6]).

Let us give an example – discretization of the right-
hand side of (16), which yields the general coefficients (2):

Let us rewrite (16), abbreviating its left-hand side as
curl and expanding only the right-hand side according to
(17). (The coordinate u in the general formula (15) stand
for t, f for te ε

σ

, C for 
1uE  and g for ε ): 
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Upper suffix denotes time position of the sample: n
uE

1
 is

the sample of 
1uE  at tntn ∆= . The approximation is valid

for time instant n, therefore the same must be true for the
remaining terms of the Maxwell’s equation (which are
“hidden” in curl) – this is marked by the suffix n at curl.
The space coordinates remain constant, therefore we
avoided to write 3 more space indices in (18).

If the formula (18) were explicit for 2
1

1

+n
uE ,  we would

obtain an expression only slightly different from (1e). In
order to obtain (1e) exactly, one must make one more
substitution into (18) (besides a cosmetic xu ≡1 ). It is self-
evident, that field samples in an equation set (like (1), e.g.)
must match. The equation (18), as is, would match (1h,1e’)
only if Zn ∈+ )( 2

1 . The transition 2
1+→ nn  makes

possible to write Zn∈ , as it is assumed for (1).

3. Experiment
The method was tested in many experiments. For the

experiments in rectangular, cylindrical and spherical
coordinates described in [2] it yielded the same results.
Both the methods yielded slightly different results
compared to the Courant condition [1] (rectangular
coordinates). Despite this fact the results are correct.
Experiment verified that the Courant condition yields a
stable t∆  but in certain cases ct∆ is slightly greater ([2]).

An experiment with FDTD in spherical coordinates is
described below.

3.1 FDTD update formulae
As an example, we will outline derivation of the

update formula for rE .

The local length units for the spherical coordinates
( ϕϑ,,r ) are ϑsin,,1 rr  respectively, hence the left-hand
side of (16) follows:
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The discretization of (19) can be readily written:
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Explanation:

• The upper indices n, i, j, k indicate position of samples:
e.g. kjinH ,,,  is the value at the point [ ]kjin rt ϕϑ ,,, , where

tntn ∆= , riri ∆= , ... 

• R and S stand for samples of the functions r and ϑsin
(respectively) at the points given by the suffices. (Those
suffices, on which the given function does not depend, are
omitted.)

The function jΦ  exactly according to (17) should be
the average of ϑsin on the corresponding abscissa, i.e.:
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At this place we made a simplification in the formulae
of the experiment. In all cases the average of ‘ ϑsin ’ was
approximated by the value of ‘ ϑsin ’ at the center of the
abscissa, i.e. jj S≡Φ  simply.

In order to get the update formula for rE , (20) and
(18) must be combined. Prior to that, ru ≡1  must be
substituted into (18) and (18) must be augmented by the
left-out space indices.

3.2 Other specifications of the
experiment
Simple boundary condition was used: electric walls

placed directly to the tangential components of E. The
shape of FDTD mesh was a “cube” in spherical coordinates
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with the walls at 15;102;1 =R , 5.1;12;1 =Θ , 1;02;1 =Φ . The
number of cells in the corresponding directions was
15;10;5. In some cases this region was made more
complex: In the sub-region that spans 3 cells in r direction
from the wall at 1R , all the cells from the wall at 1Θ  were
cut off by the electric wall to the depth of 3 cells and
similarly from the wall 1Φ  to the depth 2. The medium
was considered lossless, with 1== µε , except (in some
cases) for the following belt: The E components at

rRrRr ∆+∆+∈ 5,3 11  were updated using the constants

ea , eb  (see (2)) corresponding to 1=σ .
Altogether 22× cases were investigated: cube or complex
region with or without losses.

3.3 Results
In the case of cube with losses 289012.0=∆ ct  and it

was determined by the mode 0=rH , as the time increment
obtained from mode 0=rE  was slightly higher: 0.289068.
(The indicated precision was obtained in cca 300 iterations
without relaxation.) In the case of cube without losses

2884806.0=∆ ct . In the case of complex region with and
without losses 290303.0=∆ ct  and 0.289759 respectively.

( )nE 1−ϕ

           n

Fig. 1 Discretized field strength of the critical mode plotted
against mesh index n, along structure radius.

Fig.1 demonstrates a typical waveform of the mode
that determines instability. It is a waveform of the
component ϕE  along the r coordinate (with fixed ϑ  and
ϕ ). The waveform forms an alternating series: the product
of adjacent samples is non-positive, but in Fig.1 the
rectified waveform was plotted. The zero samples at the
boundaries 1R , 2R  are included.

3.4 Remarks to 3 dimensions
In an equation set for 3 dimensions no elimination

like (10) is possible in general. Despite that, fortunately,
the experiment yielded correct value ct∆ .

During the iterations described in chapter (2.3) the
characteristic value is estimated from samples of magnetic
field H. H field is used, because in (6) there is only one
component of this field. In general case there will be all 3
components for both E and H. In our 3-dimensional
experiment only the r components were used for the
purpose. Depending on whether it was rE  or rH , the
experiment yielded 2 characteristic values. The critical
time increment was determined by the greater one.

3.5 Verification of results
The obtained critical time increment ct∆  was verified

experimentally by means of the FDTD algorithm itself. In
order to verify that our critical time increment holds, we
made two experiments with t∆  slightly over (relative
change cca 610− ) and then slightly under our predicted

ct∆ . In all cases, exceeding predicted ct∆  values caused
instability while lower values proved to be stable. 

To be on a safe side, we recomputed the field for long
periods to be sure that no other mode does appear.

4. Conclusion
A versatile and easy-to-use method capable of precise

determination of the critical time increment for FDTD was
presented. The results were verified experimentally for a
FDTD in spherical coordinates for non-homogenous
medium and non-trivial mesh shapes. The authors assume
this method to be new.
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