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Abstract  Fast messy genetic optimisation is found 
suitable for complex microwave circuit design. Increase 
in computation speed is achieved using several ordinary 
computers connected to a network. Calculations are 
running on background so that computers can be used 
for other purposes at the same time. When applied to 
microwave circuits, a modification to previous genetic 
optimisation methods proved suitable. Dynamic change 
of bounds has significantly improved convergence rate. 
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1.  Introduction 
Circuit optimisation became one of the applications most 
used by microwave engineers. Due to the nature of 
microwave circuits, the optimisation task is far from easy. 
Error functions mostly suffer from local minimum problems, 
so that in many cases the optimisation gets unbelievably 
inefficient. 
During larger microwave structure optimisation local 
iteration methods tend to fall into local minimums. Hence, 
the new - global - methods like simultaneous annealing, 
taboo method or genetic algorithms are being used lately. 
The more variables we try to tune, the bigger state area gets 
and the optimisation on a single machine becomes rather 
slow. For overall speedup, several computers connected to 
each other are used. 
The genetic algorithm (GA) is a stochastic global search 
method that mimics the metaphor of natural biological 
evolution. GAs operate on a population of potential solutions 
applying the principle of survival of the fittest to produce 
(hopefully) better and better approximations to a solution.  
 
2.  Fast Messy Genetic Algorithm (fmGA) 
Fast messy genetic algorithm is a special clone of common 
simple genetic algorithm (GA). This type represents new, 
more powerful kind in the GA branch. It resists premature 
local-minimum fall and solves problems in shorter time.  
A gene is represented by a pair (allele locus, allele value) in 
messy algorithms, so that – for instance – chromosome 
(2,0),(0,1),(1,1) represents 3 bit-long  chromosome 110. 
Operation cut and splice are used to bread new offspring. 
Incomplete specification of the chromosome 
(underspecification) or redundant specification  
(overspecification) could occur during evolution. 
Overspecification is solved by right-to-left scan, i.e. the only 
first occurence of an appropriate pair is taken into account. 
For example: ((0,0), (2,1), (1,0), (2,0)) represents 
chromosome 001. On the other hand, underspecification is 

harder to deal with. We must complete the chromosome in 
order to be able to evaluate its fitness function (FF). Hence a 
template is used – see Fig. 1. 
 
The algorithm works in two main iteration cycles – in the 
inner and outer loops. Each new start of outer loop is called 
as an era. The change of building-block order together with 
inner cycle launching is the main aim of this cycle.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Inner cycle consists of three phases:  

1) initialisation 
2) building block filtering phase 
3) juxtapositional phase 

Detailed description of the algorithm could be found in [1], 
[3] and [4]. 
 
3.  Improvements 
We have decided to use this algorithm for microwave circuit 
optimisation. In order to save time, circuit analysis and 
Fitness Function (FF) evaluation has been carried out using 
the source code of a microwave CAD program called MIDE 
(see [2]). Implemented algorithm is based on [1] with the 
following important modifications: 
 
Parallel multitasking 
The bottleneck of any common algorithm is in the time 
consumption of FF evaluation – even a simplest circuit gets 
evaluated hundreds to thousand times per second. If one uses 
almost any global search method (and GAs specially) 
hundreds of thousands evaluations are required. The local 
area network has been used and the task has been divided to 
many common workstations. The application has been 
running under multitasking environment so that computers 
could be used for ordinary tasks like writing reports or 
playing games. At no extra cost, performance exceeding any 
single PC has been made available. 

Fig. 1  Representation of a solution – chromosome. 



 
Implementation  
Parallel computation machine was implemented using 
common client-server model. The first idea led to launching 
single fmGA algorithm on the server and then distribute 
appropriate variables together with optimising circuit to the 
clients. Clients then perform evaluation (compute the 
solution) and return result to the server. In order to minimize 
the total network overhead we suggested batch processing (a 
bundle of waiting states are together send to the client and 
then – after evaluation – the same bundle of solutions are 
returned). 
 
Dynamical change of bounds 
As mentioned, GA is global search method. Its success and 
convergence rate to global (or at least usable local) 
minimum depends on suitable bounds. Logically – the wider 
bounds are set, the lower is the probability of right minimum 
discovery. From experiments results that while the 
approaching to a neighbourhood of a minimum takes 
relatively short time, falling into minimum takes at least 
same time or longer. This is mostly seen as a bottleneck of 
GA – but we have used this fact to improve robustness of 
global optimum search. To achieve that, we have 
implemented dynamical change of bounds depending on the 
actual position in the space state.  
 
A sketch of the procedure follows: 
a. look for a solution in the state space 
b. if the FF doesn’t improve for longer time, try to adjust 

bounds so that the so-far found solution would lie in the 
centre; modify the bounds in order to be the half of the 
original range 

c. perform operations a-b until  
i. Solution is found 

ii. So-far found solution is out of new set range 
d. if no solution in a-b-c was found, return to point a and 

look for another solution 
 

4.  Results 
As an example that is easy to understand but not rather easy 
to optimise, we chose a textbook optimisation problem, see 
Fig. 2.  
 
 
 
 

The task follows:  
Find electrical lengths L1 and L2 of two short-ended stubs, 
connected to a transmission line in parallel, so that the 
transmission coefficient would be lower than –25 dB 
between frequencies 6 GHz and 6.2 GHz. Simultaneously 
we want to achieve transmission better than -0.5 dB at 3 
GHz. These demands are schematically shown in Fig. 4. 
In the case the lengths are to be found in a range between 1 
and 180 degrees for both stubs, the task is quite easy and any 
optimisation method works. To obtain a good test case, we 
try to find the optimum in a wider range, say 1 – 1000 
degrees. FF shape then exhibits a number of local minima. 
The reason is obvious – electrical character of both stubs is 
repeated every 180 deg. Global minimum discovery in such 
selected area is almost impossible for common optimisation 
methods – see Fig. 3. Typical simplex methods will mostly 
find a local minimum, however, FF is always bigger than 0 
(not all goals are met). A few examples of such solutions are 
shown in Fig.3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig. 2 Test case – two shorted stubs in parallel to a line.  

Fig. 4: Forward transmission for correct solution 
(approx 175 and 178 degrees @ 6GHz). 

Fig. 3  Fitness function surface plot shows a number of 
local optima. 

 



Using the new method, we started from the same point (we 
filled up variables with the same start values similarly  to the 
above mentioned optimisation method) and carried out 
several optimisation runs.  In all runs the global minimum 
has been found. 

The process is illustrated at Fig. 6. Notice one important 
feature: during the launching of a new era, the best so-far 
found chromosome is copied into template. It results in 
temporary degradation of FF (you can see bumps in the 
graph), however, in a few moments a new – often better - 

solution is found. Such iterative progress is typical for messy 
algorithms.  
Figure 7 shows effect of dynamical change of bounds. It 
arises at the end of 6th, 12th and 17th era (vertical red lines). 
Please note, that there are significant temporary FF 
degradations, but the local minima are left (red ellipses). 
 
5.  Outlook 
Unfortunately, even the best found ratio between block size 
(which was sent to clients for processing) and time spent for 
comunication shown that interconnected communication 
overhead took approximately  15-20% of computational 
time. That was the reason why a new method was proposed.  
 
Parallel fmGA server 
The new method  combines both mentioned improvements 
together: clients no more behave only as silly slaves (whose 
only task is fitness function evaluation) but each of them 
runs its own fmGA algorithm. Server side must solve the 
area division problem. Server can than send to each client 
only some sub-bounds of original problem. Each client 
receives different bounds and thus totally independently tries 
to discover solution(s) in its own sub-area.  
 
Area division problem 
Division of an 1-D area is obviously the simplest task – see 
Fig. 8. Appropriate areas are a little bit overlapped. It was 
found useful in cases when the right solution lay near the 
border of a sub-range.  

 
Situation appears rather harder for n-dimensional area 
(where N>1). Of course, we can perform the same division, 
but the less clients we have the coarser the division is 
(especially in case of many variables with large bound 
limits). A right solution can be discovered with much less 
probability. Keeping the uniform division step for all 
variables is a better technique, however we must cope with 
the situation that we create more intervals than cooperating 
clients. The above mentioned reasons made us to implement 
so-called computational stack, i.e. a structure that 
temporarily saves areas which wait for exploration – see Fig. 
8 and 9. 
As soon as the stack is empty (and no suitable solution has 
been found), results from all sub-areas are compared 
together and area bounds are changed so that they more tight 
surround so-far best found solution (i.e. dynamical change of 
bounds). If there are more than one area, where partial 
results are comparable, all of these areas are processed – one 

Fig. 5 Some of the false solutions produced by ordinary 
optimisation methods. 

Fig. 7 A detailed sketch of solution evolution describing 
method behaviour in local optima. 

Fig. 6 Fitness function plotted against eras. 
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Fig. 8 Example of division and overlapping in 1-D area. 



is explored and the others are saved into stack for later 
exploration.  
 

Gradient method incorporation 
First experiments of suggested method shown that time spent 
on discovering near neighbourhood of FF minimum and time 
spent on falling into the minimum are for algorithm fmGA 
almost comparable. I.e. the algorithm is capable of 
discovering the surrounding of solution in quite large search 
space, but at the present there exist better algorithms 
(typically gradient methods) for quick discovering of  FF - 
peek. 

 
6.  Conclusions 
Fast messy genetic optimisation is a promissive method 
found suitable for complex microwave circuit design. High 
computational load can be overcome at nearly no cost using 
several ordinary computers connected to a network. Running 
calculations on background enables other users to do their 
jobs at the same time.  
A modification to previous genetic optimisation methods, 
suitable for microwave circuits, proved to work and 
significantly improved convergence rate. 
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Fig. 10 Sketch of parallel computation engine. 
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Fig. 9 Example of division and overlapping in 3-D area. 


