
Scalable Parallel Optimisation Using Fast Messy Genetic Algorithm

Pavel Kostka, Zbynek Skvor

Department of electromagnetic field, FEE CTU in Prague, Technicka 2, 166 27 Praha 6

Phone: +420 2 2435 5966, E-mail: xkostka@fel.cvut.cz, skvor@fel.cvut.cz

Abstract Fast messy genetic optimisation is found
suitable for complex microwave circuit design. Increase
in computation speed is achieved using several ordinary
computers connected to a network. Calculations are
running on background so that computers can be used
for other purposes at the same time. When applied to
microwave circuits, a modification to previous genetic
optimisation methods proved suitable. Dynamic change
of bounds has significantly improved convergence rate.

Key words: microwave circuit optimisation, genetic,

parallel

1. Introduction
Circuit optimisation became one of the applications most
used by microwave engineers. Due to the nature of
microwave circuits, the optimisation task is far from easy.
Error functions mostly suffer from local minimum problems,
so that in many cases the optimisation gets unbelievably
inefficient.
During larger microwave structure optimisation local
iteration methods tend to fall into local minimums. Hence,
the new - global - methods like simultaneous annealing,
taboo method or genetic algorithms are being used lately.
The more variables we try to tune, the bigger state area gets
and the optimisation on a single machine becomes rather
slow. For overall speedup, several computers connected to
each other are used.
The genetic algorithm (GA) is a stochastic global search
method that mimics the metaphor of natural biological
evolution. GAs operate on a population of potential solutions
applying the principle of survival of the fittest to produce
(hopefully) better and better approximations to a solution.

2. Fast Messy Genetic Algorithm (fmGA)
Fast messy genetic algorithm is a special clone of common
simple genetic algorithm (GA). This type represents new,
more powerful kind in the GA branch. It resists premature
local-minimum fall and solves problems in shorter time.
A gene is represented by a pair (allele locus, allele value) in
messy algorithms, so that – for instance – chromosome
(2,0),(0,1),(1,1) represents 3 bit-long chromosome 110.
Operation cut and splice are used to bread new offspring.
Incomplete specification of the chromosome
(underspecification) or redundant specification
(overspecification) could occur during evolution.
Overspecification is solved by right-to-left scan, i.e. the only
first occurence of an appropriate pair is taken into account.
For example: ((0,0), (2,1), (1,0), (2,0)) represents
chromosome 001. On the other hand, underspecification is

harder to deal with. We must complete the chromosome in
order to be able to evaluate its fitness function (FF). Hence a
template is used – see Fig. 1.

The algorithm works in two main iteration cycles – in the
inner and outer loops. Each new start of outer loop is called
as an era. The change of building-block order together with
inner cycle launching is the main aim of this cycle.

Inner cycle consists of three phases:

1) initialisation
2) building block filtering phase
3) juxtapositional phase

Detailed description of the algorithm could be found in [1],
[3] and [4].

3. Improvements
We have decided to use this algorithm for microwave circuit
optimisation. In order to save time, circuit analysis and
Fitness Function (FF) evaluation has been carried out using
the source code of a microwave CAD program called MIDE
(see [2]). Implemented algorithm is based on [1] with the
following important modifications:

Parallel multitasking
The bottleneck of any common algorithm is in the time
consumption of FF evaluation – even a simplest circuit gets
evaluated hundreds to thousand times per second. If one uses
almost any global search method (and GAs specially)
hundreds of thousands evaluations are required. The local
area network has been used and the task has been divided to
many common workstations. The application has been
running under multitasking environment so that computers
could be used for ordinary tasks like writing reports or
playing games. At no extra cost, performance exceeding any
single PC has been made available.

Fig. 1 Representation of a solution – chromosome.

Implementation
Parallel computation machine was implemented using
common client-server model. The first idea led to launching
single fmGA algorithm on the server and then distribute
appropriate variables together with optimising circuit to the
clients. Clients then perform evaluation (compute the
solution) and return result to the server. In order to minimize
the total network overhead we suggested batch processing (a
bundle of waiting states are together send to the client and
then – after evaluation – the same bundle of solutions are
returned).

Dynamical change of bounds
As mentioned, GA is global search method. Its success and
convergence rate to global (or at least usable local)
minimum depends on suitable bounds. Logically – the wider
bounds are set, the lower is the probability of right minimum
discovery. From experiments results that while the
approaching to a neighbourhood of a minimum takes
relatively short time, falling into minimum takes at least
same time or longer. This is mostly seen as a bottleneck of
GA – but we have used this fact to improve robustness of
global optimum search. To achieve that, we have
implemented dynamical change of bounds depending on the
actual position in the space state.

A sketch of the procedure follows:
a. look for a solution in the state space
b. if the FF doesn’t improve for longer time, try to adjust

bounds so that the so-far found solution would lie in the
centre; modify the bounds in order to be the half of the
original range

c. perform operations a-b until
i. Solution is found

ii. So-far found solution is out of new set range
d. if no solution in a-b-c was found, return to point a and

look for another solution

4. Results
As an example that is easy to understand but not rather easy
to optimise, we chose a textbook optimisation problem, see
Fig. 2.

The task follows:
Find electrical lengths L1 and L2 of two short-ended stubs,
connected to a transmission line in parallel, so that the
transmission coefficient would be lower than –25 dB
between frequencies 6 GHz and 6.2 GHz. Simultaneously
we want to achieve transmission better than -0.5 dB at 3
GHz. These demands are schematically shown in Fig. 4.
In the case the lengths are to be found in a range between 1
and 180 degrees for both stubs, the task is quite easy and any
optimisation method works. To obtain a good test case, we
try to find the optimum in a wider range, say 1 – 1000
degrees. FF shape then exhibits a number of local minima.
The reason is obvious – electrical character of both stubs is
repeated every 180 deg. Global minimum discovery in such
selected area is almost impossible for common optimisation
methods – see Fig. 3. Typical simplex methods will mostly
find a local minimum, however, FF is always bigger than 0
(not all goals are met). A few examples of such solutions are
shown in Fig.3.

 Fig. 2 Test case – two shorted stubs in parallel to a line.

Fig. 4: Forward transmission for correct solution
(approx 175 and 178 degrees @ 6GHz).

Fig. 3 Fitness function surface plot shows a number of
local optima.

Using the new method, we started from the same point (we
filled up variables with the same start values similarly to the
above mentioned optimisation method) and carried out
several optimisation runs. In all runs the global minimum
has been found.

The process is illustrated at Fig. 6. Notice one important
feature: during the launching of a new era, the best so-far
found chromosome is copied into template. It results in
temporary degradation of FF (you can see bumps in the
graph), however, in a few moments a new – often better -

solution is found. Such iterative progress is typical for messy
algorithms.
Figure 7 shows effect of dynamical change of bounds. It
arises at the end of 6th, 12th and 17th era (vertical red lines).
Please note, that there are significant temporary FF
degradations, but the local minima are left (red ellipses).

5. Outlook
Unfortunately, even the best found ratio between block size
(which was sent to clients for processing) and time spent for
comunication shown that interconnected communication
overhead took approximately 15-20% of computational
time. That was the reason why a new method was proposed.

Parallel fmGA server
The new method combines both mentioned improvements
together: clients no more behave only as silly slaves (whose
only task is fitness function evaluation) but each of them
runs its own fmGA algorithm. Server side must solve the
area division problem. Server can than send to each client
only some sub-bounds of original problem. Each client
receives different bounds and thus totally independently tries
to discover solution(s) in its own sub-area.

Area division problem
Division of an 1-D area is obviously the simplest task – see
Fig. 8. Appropriate areas are a little bit overlapped. It was
found useful in cases when the right solution lay near the
border of a sub-range.

Situation appears rather harder for n-dimensional area
(where N>1). Of course, we can perform the same division,
but the less clients we have the coarser the division is
(especially in case of many variables with large bound
limits). A right solution can be discovered with much less
probability. Keeping the uniform division step for all
variables is a better technique, however we must cope with
the situation that we create more intervals than cooperating
clients. The above mentioned reasons made us to implement
so-called computational stack, i.e. a structure that
temporarily saves areas which wait for exploration – see Fig.
8 and 9.
As soon as the stack is empty (and no suitable solution has
been found), results from all sub-areas are compared
together and area bounds are changed so that they more tight
surround so-far best found solution (i.e. dynamical change of
bounds). If there are more than one area, where partial
results are comparable, all of these areas are processed – one

Fig. 5 Some of the false solutions produced by ordinary
optimisation methods.

Fig. 7 A detailed sketch of solution evolution describing
method behaviour in local optima.

Fig. 6 Fitness function plotted against eras.

Subrange 1 Subrange 3

Subrange 2

Variable A

..................

Fig. 8 Example of division and overlapping in 1-D area.

is explored and the others are saved into stack for later
exploration.

Gradient method incorporation
First experiments of suggested method shown that time spent
on discovering near neighbourhood of FF minimum and time
spent on falling into the minimum are for algorithm fmGA
almost comparable. I.e. the algorithm is capable of
discovering the surrounding of solution in quite large search
space, but at the present there exist better algorithms
(typically gradient methods) for quick discovering of FF -
peek.

6. Conclusions
Fast messy genetic optimisation is a promissive method
found suitable for complex microwave circuit design. High
computational load can be overcome at nearly no cost using
several ordinary computers connected to a network. Running
calculations on background enables other users to do their
jobs at the same time.
A modification to previous genetic optimisation methods,
suitable for microwave circuits, proved to work and
significantly improved convergence rate.

Acknowledgements
This research and publication have been sponsored by Czech
Grant Agency, contracts no. 102/01/0571 and 102/01/0573,
and by Czech Ministry of Education in the frame of project
MSM 210000015

References
[1] Knjazew, D.: Application of the Fast Messy Genetic

Algorithm to Permutation and Scheduling Problems,
Illigal Report 2000022, University of Illinois, May
2000, available also at http://gal4.ge.uiuc.edu/pub/

[2] Skvor, Z.: CAD pro vf. techniku, textbook, Czech
Technical University, Prague 1998,
http://www.mide.cz

[3] Goldberg, E. – Deb, K. – Kargupta, H. – Harik, G.:
Rapid, Accurate Optimisation of Difficult Problems
Using Fast Messy Genetic Algorithms, Illigal Report
93004, University of Illinois, February 1993

[4] Pelikan M. – Sastry, K. – Goldberg, D.: Evolutionary
Algorithms + Graphical Models = Scalable Black-box
Optimisation, Illigal Report 2001029, University of
Illinois, November 2001

.....

computational
stack

fmGA 1 fmGA 2 fmGA 3 fmGA n

gradient

server

Fig. 10 Sketch of parallel computation engine.

Variable A

Variable B

Variable C

Subrange A-B-C

Fig. 9 Example of division and overlapping in 3-D area.

